Features and Rules in the Logoori Tone Melody System*

David Odden
University of Washington

1. Background

Bantu languages have long presented a theoretical and analytic puzzle in tonal analysis, which is that verb inflections are signalled not only with segmental affixes, they also involve abstract tone melodies aligned to the verb stem, as exemplified by the Shona data in (1).
verbs stems: pa 'give', tor-es-er-an-a '(make) take (for (each other)), ti 'say', bik-is-ir-an-a '(make) cook (for (each other))', shamwarizis-ir-an-a 'make befriend for (each other)', bhururukis-ir-an-a 'make fly for (each other)'; inflections $k u$ - 'infinitive', ha- 'negative', $t(i)-a$ '1pl.subj'+recent past', va- 'class 2 subj', -i 'non-past final vowel', -a 'general final vowel'

| H root L root
 $\mathrm{ku}[$ pá $\mathrm{ku}[\mathrm{ti}$ Infinitive
 $\mathrm{ku}[$ tórá $\mathrm{ku}[$ bika (pattern 1)
 $\mathrm{ku}[$ tórésá $\mathrm{ku}[$ bikisa
 $\mathrm{ku}[$ tórésána $\mathrm{ku}[$ bikisana
 $\mathrm{ku}[$ tórésérana $\mathrm{ku}[$ bikisirana ${ }^{2}$ | |
| :--- | :--- | :--- |

hatá[pa
hatá[tóra
hatá[tóresá
hatá[tóréserá
hatá[tóréséraná
hatá[shámwárídzisirá
hatá[shámwárídzisiraná
hatá[tóresá
havá[pí
havá[tórí
havá[tórésí
havá[tóréséri
havá[tórésérani

L root

ku[ti
ku[bika
ku[bikisa
ku[bikisana
ku[bikisirana
hatá[biká
hatá[bikísa
hatá[bikísíra
hatá[bikísírana
hatá[bhurúrúkisira
hatá[bhurúrúkisirana
hatá[bikísa
Recent past negative
(pattern 2)

Present negative
havá[bikí
havá[bikírí
havá[bikísírí
havá[bikísírání

These systems having been studied for many years, and a decade ago they were the subject of an issue of Africana Linguistica. The analysis of melodies breaks down into two main parts: representation, and computation. In Shona there are three patterns. The first, seen in the infinitive, only reflects general phonological rules. In the other two cases, tones are added to the stem as as aspect of inflection, and the primary analytic questions are, how are these tones represented in connection with inflectional material, and how are they lined up with stem vowels? The representation of the melody could be two

[^0]floating Hs as suffixes which mark certain tenses, and paired with those tones there would be rules saying where the Hs initially go and how they are modified. Such systems of rules (see Odden 1981) would be responsible for explaining why there is no added H in disyllabic H roots and no final H in trisyllabic L verbs, in the second pattern.

The problem is that the required rules are, to a considerable extent, specific to a particular melody. We have to be able to also account for the fact that there can be a final H in a disyllabic H verb under a different melodic pattern. For the most part, work on Bantu melodic tone inflection has glossed over the precise mechanisms for deriving these patterns, and research on the topic has strongly tended to be atheoretically descriptive. There is nothing wrong with providing a clear description of the facts, but hopefully by the end of this paper, the reader will see how the present change in perspective can benefit such descriptions of phonology, by putting primary analytic emphasis on the patterns of data alternation. Simply put, the approach advocated here holds that when tones behave the same, it is because they have something in common, and when they behave differently it is because they have a distinguishing feature. Shared and distinguishing features are not determined by the physical realization of segments, they are determined by what the segments do, phonologically. Under the perspective advocated here, it is the overall system of phonological alternations that determine the featural analysis of tones in a language, it is not just the phonetic output.

In this paper, I return to a specific case which I treated in a previous paper (Odden 2018) unsatisfactorily in hindsight - the system of Logoori, a Luhya language of Western Kenya. In that paper, I discussed a half-dozen inflectional patterns, and concluded that a purely representational approach is insufficient, noting that the concept of melody must also encode the melodic system into the rules which map the tones.
these patterns have evaded analysis in purely representational terms-it is not enough to say that a certain tense adds an H , or two Hs , one must say what happens when these tones are added. Not only must one specify a particular target of initial association, a fact that has been well known throughout the history of autosegmental analysis of Bantu tone, one must say what that melodic tone does to other tones [p.93].

For instance, in Logoori the subjunctive has one melodic H, as does the indefinite future, but the surface behavior of these two Hs is very different. How then do we encode that difference in the grammar? At the time, I had no clue, but I now understand that the problem comes from the representational premise that we only have H and zero or L , because that is what you have in pronunciations.

To the extent that papers give an analysis with explicit mapping rules rather than descriptive statements, the usual approach is to impose the burden on the mapping rules, by having one group of tone rules be triggered by the syntactic and semantic properties which characterize, for instance, the indefinite future, versus a different group of tone rules triggered by the grammatical properties defining the subjunctive. This approach is very problematic on theoretical grounds, because it blatantly rejects the important theoretical premise that a grammar is a set of independent computational modules, where phonology only accesses phonological properties, syntax only accesses syntactic properties, and semantics only accesses semantic properties. This purely rule-based phoneticallydefined approach says that phonology has access to everything. The approach which puts the entire burden on the rule system fails quasi-empirically because multiple rules would also have to be
redundantly burdened with exactly the same list of inflectional categories. ${ }^{1}$ The pattern found in the indefinite future is shared by a number of other inflections such as the conditional, consecutive, persistive and so on, so we would end up requiring about a half-dozen rules, each of which would need to recite the particular list of inflections following the M2 pattern. Furthermore, it is not sufficient to just say "subjunctive" to identify the forms with the M3 pattern, because only a subset of subjunctives follow this pattern, namely the ones with no tense inflection between the subject prefix and the Mstem. We need to somehow set up the underlying forms to correctly encode information as to what tenses trigger which rule patterns. The problem is that with just H and L to work with, we can't come up with reasonable relations between rule behavior and representations. The problematic representational assumption comes from a view of phonology, one increasingly called into question, that objects in phonology are phonetic descriptions of pronunciation, and not descriptions of phonological behavior.

My solution to the melody quandry starts from a different view of phonology, that of the radical substance-free approach to grammar, where phonological features for tone are not phonetic descriptions of pitch, they are descriptions of phonological class behavior. When two tones do the same thing, that is because they have a common feature. See Odden (2022, 2021, 2020), Chabot (2021), Danesi (2022) for applications of this approach. Under this approach, rule-based behavior is what defines and allows a language-learner to discover features. If one melody has a tone that maps to the second syllable and a different melody puts tone on the final syllable, we would not say that the two melodic tones are the same object, we would naturally say that they are representationally different things, and the rule system refers to that difference. The rules then directly refer to that distinction as represented with distinct features, and the two mapping rules call out different tonal objects, despite any tendency for the tones to be pronounced the same. The burden of accounting for melodic patterns falls equally on computation and representation. The primary culprit in being unable to devise a theory of tone melodies is the premise that tone features are articulatory instructions rather than indicators of phonological behavior. That theoretical error has been corrected.

2. First steps in identifying tonal distinctions

A preliminary note is necessary, regarding the data and tonal analysis of Logoori. There is a high degree of variation in the language, both between speakers and within speakers. The results of my work over the years are being disseminated on https://languagedescriptions.github.io/Logoori/, which is a work in continual progress. It includes a chapter on the verbal tone system which gives vastly more data and details. This paper constitutes an "executive summary" focusing on the broadest generalizations, hopefully valid for most speakers. My data comes from slightly over a dozen speakers, which constitutes a miniscule fraction of the roughly 600,000 speakers of the language. Because the central question of rules and features is a cognitive question about an internalized grammar, it is important that the generalizations be representative of at least one speaker of the language.

The generalizations presented here are valid for EM, who has provided the majority of my data over the past decade. As noted in the grammar, some speakers have slightly (or substantially) different tonal systems compared to the facts presented here. Such variations do not play a role in the present paper, and any mention of optionality or variation means that EM produces (indeed volunteers) both

[^1]variants. In other words, the system described here is not based on the false premise that speakers have full access to all outputs of all speakers of the language. Like any language, Logoori has dialects.

A current lacuna is that there is no complete description of the facts of Logoori verbalinflectional tone. Although I have been working on Logoori full-time for a decade, I discovered two new verb tenses just within the 4 months that I have been writing this paper. For that reason, this should be considered to be a progress report outlining some of the basic phonological patterns of verb tone and an analytic framework for coping with tone. I point to and do not analyse the substantial complication contributed by object prefixes, I do not even mention the quirk of unprefixed subject relative forms which can have yet a different melodic pattern from verbs in other clause types.

Pak (2021) addresses one of the central concerns of this paper, namely how can the apparent need for massive reference to morphological properties - specifically in Logoori verbal tone - be accomodated in a modular theory of grammar. Her solution differs from mine in important ways, mainly stemming from apparent differences in underlying theory. The most important, it seems to me, lies in the question of the substance of phonological features, where her analysis employs just H and L tonal objects plus metrical structures as a substitute for some of the abstract features posited here, whereas my analysis is strictly based on distinctive i.e. phonological feature differences, and requires no exceptions to modularity in the form of re-write rules, which additionally have a kind of computational power (disjunctive rule blocks) not employed here. We agree in the basic idea that the behavior divergence between melodies comes from something in the morphology, we differ in what that thing is. Specifically, I claim, it is what tone is affixed. While Pak argues for readjustment rules as a limited version of process-based morphology in a primarily piece-based theory, the present analysts has no process-based morphology at all, that is, readjustment simply is not necessary for Logoori, if one has the right theory of features. ${ }^{2}$ There are substantial empirical differences in these analysis, in that Pak analyses only the M1 / M2 distinction. Later versions of this paper may include explicit comparison of these two analyses.

2.1. Tones in lieu of melodies

In the phonological theory of tones advocated here, we start with the most basic fact, that some vowels have tones and some do not. This can be seen in any random sample of words in the language.

ndaaké'dééka	'I cooked it'
yígoraa	'he used to open'
umusháani	'son'
kútúuza	'to spit'
varakavoruganyi	'they will mix'
ndakíhaandiika	'I will write it'

kwaakává'hómóóra	'we massaged them'
Isige	'locust'
vátakuráánga	'if they don't call you'
ekégótu	'lost'
tareetá	'don't marry!'
vaangóó' náa	'they are helping me'

${ }^{2}$ Pak argues for the necessity of readjustment rules because they seem to be necessary as long as we assume that the tonal inventory contains only H, Ø and always-derived L - of course, denying that assumption is the essence of the present analysis. Pak seeks to strengthen the case against increasing the range of non-phonetic tone distinctions, by finding that this move "opens up a number of questions about the distribution of L and H in Logoori that would demand explanation", however, free random distribution of tones vastly overgenerates representations in Logoori anyhow, and the present theoretical framework rejects the traditional premise that grammars should state all observed non-random distributions, many of which remain unexplained even in an account with readjustment - for example, why do no tense-aspect prefixes bear tone, why do no verbal segmental suffixes bear tone?

Three aspects of Logoori tonal pronunciation must be notated in any observationally adequate record of the language. First, every syllable either has raised pitch or else non-raised pitch. In the word tareetá, the first two syllables have non-raised pitch (indicated by lack of an accent), the last has raised pitch (indicated by the acute accent). In ekégóto, the raised pitches are on the second and third syllables and the non-raised pitches are on the first and last syllables. It is a non-phonological matter of phonetic implements to say how much a particular syllable is (non-)raised, in fact the raised pitch of tareetá is noticeably lower than the raised pitch of yílgora. This level of detail is accounted for by the phonetic component, not the phonology.

Second, there is a distinctive lowering of all pitches, notated in the above transcriptions with a tick mark, standing for 'downstep'. In [kwaakává'hómóóra] all but the first and last syllables have raised pitch, but the sequence [kává] is raised relative to a higher baseline than in [hómóó], that is, pitch drops a bit between [kává] and [hómóó]. The location / presence of downstep is a fundamentally distinctive surface phonological fact of the language. Finally, long vowels can have two distinctive types of raised pitch, a falling raised pitch as in the second syllable of [kútúuza], and a level raised pitch as in [yíígoraa]. Somewhat foreshadowing the analysis, we will simply say that [tá] in [tareetá] "has tone", because this fact is directly observed in prounciations and is necessary to say how the phonetics works. A basic limit on reliance on pronunciation alone for determining the phonological analysis is that we cannot conclude that [ta] and initial [ta] and [ree] are toneless, just because they don't have raised pitch. It is possible (indeed it will be demonstrated here) that [ree] does have a phonological tone, but that it has a different tone from the tone on the final syllable - it is a third kind of tone, one realized physically the same as a total lack of phonological tone. The literature on Bantu tone has frequently yet sporadically admitted a three-way distinction between H , unspecified L , and specified L , which is exactly what is proposed for [tareetá], that [ree] has a "specified L" that is a specified tone that is not physically raised, whereas [ta] has no tone at all. Logoori is indeed a language with such a phonological distinction.

Certain regular properties of these surface representations are the result of phonological rules. The two most important and ubiquitous in the language are that (a) a tone spreads to the left via a rule Leftward Spreading and (b) when two physically-realized tones come together on adjacent vowels, there is always reduction in the baseline pitch, i.e. downstep. The operation of Leftward Spreading is seen in (3). Notice how addition of a word with a tone causes raising of otherwise toneless syllables.

umơndumoritumúráhiumơndu morituúmúv́ndú múrítú múráhimaheengeremaheengere maangumaheengere maangu morojumáhéengéré máangú mórơjú

```
'person'
'heavy'
'good'
'heavy person'
'good, heavy person'
'bean-maize food'
'light mahengere'
'light mahengere in a saucer'
'light mahengere in a big saucer'
```


(Optionality and word-initial exclusion require further study)

When a toned syllable is followed by another toned syllable, the tone spreads leftward up to the preceding tone, and a downstep appears to separate the two tones.

mbéére
mbéé ré máráhi
mwíídako
mwií! dákó múráhi
mkúúnzakari
mkướnzákárí ḿtáámbi
matíginyu
matíginyu malla
matí̀ gínyú mállá mánéne
kuváchoolla
kuvá'chóóllá éng'érengani
ková'chóóllá éng'é'réngání índáhı

```
'milk'
'good milk'
'Idakho person
'good Idakho'
'widow'
'tall widow'
'heels'
'some heels'
'some big heels'
'to draw for them'
'to draw a star for them'
'to draw a good star for them'
```

Downstep also arises directly from phrasal concatenation of toned syllables without Leftward Spreading, though word-initial sylllables are usually not toned. There are a number of CV particles such as g ú 'certainly' (conveying assurance) or ndí 'in that way', which cause insertion of downstep $_{\text {a }}$ when preceded by a word with a final (realized) tone.

```
varádéeka
varádéé'ká gú
varádéé ká ndí
varánwá
varánwá! gú
varánwá! ndí
```

```
'they will cook'
'they will certainly cook'
'they will cook in that way'
'they will drink'
'they will certainly cook'
'they will cook in that way'
```

Outputs like [varádééká ndí], which derives from /varadéeka ndí/, illustrate a disconnect between standard segmental transcriptions and their analysis. Transcriptionally, we have 4 tone marks and a downstep operator, but this is a segmental shorthand for a more structured representation with fewer tonal objects.

"T" simply stands for "tone", with no implication of how this tone is pronounced. What seems to be a sequence of H tones on adjacent vowels, seen at the level of transcriptions, is actually one tone with a multi-syllable domain. "Downstep" is not a phonological object in Logoori, it is simply a way of noting the phonetic lowering of pitch register between two tones - as a general fact of tonal phonetics, the baseline for each tone (irrespective of number of associations between the tone and segments) is lower than that of its predecessor.

With no further phonological facts to justify subdivisions of tone in this language, we would posit a familiar H / \varnothing analysis of tone as is typical of most Bantu languages. We can now give an account of one of the verbal tone patterns, the M1 pattern, which has no inflectional melodic tones. As is typical of Bantu, there is a lexical root contrast between toned and toneless roots. This is directly revealed in the M1 tenses which do not add any melodic tone, see infinitives in (8).
toneless (L) verbs haanzuukizaang 'be causing to yell', ganaganaang 'be thinking', haanzuukiz 'cause to yell', rakuuriz 'cause to release', veezeger 'belch', ganaganir 'think for', ganagan 'think', rakuur 'release', taandur 'tear', guriz 'sell', gurizaang 'be selling', biim 'measure', rag 'promise', sh 'grind'; (H) toned verbs , taangaaziraang 'be announcing for', vodong'anaang 'be going around', taangaazir 'announce for', karaangiz 'cause to fry', suundurany 'over-pour', vodong'anir 'go around for', vodong'an 'go around', karaang 'fry', cheeriz 'greet', karag 'judge', karagaang 'be judging', deek 'cook', veg 'shave', ty 'fear'.
(8) Toneless
kv[haanzuokizaanga
kv[ganaganaanga
kv[haanzoukiza
ku[rakuoriza
ko[veezegera
kv[ganaganıra
ku[ganagana
kv[rakuora
kv[taandura
kv[guriza
ku[gurizaanga
kv[biima
ko[raga
kv[sha

Toned
kv[táángaazıraanga
ko[vódong'anaanga
kv[táángaazıra
kv[káraangiza
ku[súúnduranya
ko[vódong'anıra
ko[vódong'ana
ko[káraanga
ku[chéériza
ko[káraga
kv[káragaanga
ko[déeka
ko[véga
kv[tyá

We observe one alternation in these data, in toned roots, between falling and level tone. Falling tone has a very limited distribution. First, it arises in certain phrasal combinations, when a tone from one "word" (syntactic position) phonologically moves to the beginning of another word via syllable fusion, for example /vaakaryá inama/ \rightarrow [vaakar-íinama] 'they ate meat', /aváána varideeká inama/ \rightarrow [aváána varideek-ínnama] 'the children who will cook meat'. Falling tone also arises when preverbal tonal particles such as the completive-focus marker "E" realized as a tone on a long subject prefix syllable $/ E$ kwaakagura/ \rightarrow [kwáakagora] 'we have now bought' (recent). Strictly within the word, falling pitch is also a feature of any prepausal raised pitch from a phonological tone, thus in [varánwá] from /varanwá/, F_{0} in the syllable [nwa] falls to some degree, however this is not part of phonology, and is not part of the transcriptions. Apart from the previously-mentioned phrasal derivations of falling tone, phonologically relevant falling tone only appears on a long penultimate syllable, elsewhere a long syllable with tone is level high pitched. The distinction between falling versus level-H long penults is not phonetically predictable and is lexically unpredicable in nouns, see for example vmusáaza 'husband’, irigóondi ‘sheep', ekéróori ‘heifer’ vs. irigáánda 'bean’, vrvbááng'a 'panga', vmukáána 'girl'. In verbs, the distinction is predictable primarily based on the melodic pattern, see for example arichóóra 'he will draw' (indefinite future, M2) versus arákóona 'he will help' (immediate future, $\mathrm{M} 1)$, a distinction discussed below. The alternation between level versus falling long syllables is seen above in kotáángaazıraanga, kvtáángaazıra, kusưóndvranya, kvchéériza versus kodéeka. At this point, one might either posit a tonal sub-feature "falling" which is assigned to the tone in kodéeka but not kuchéeriza, or the difference might be encoded as a difference in the association domain of the tone, to the two moras of the long vowel in kochéériza but only the first half of the vowel in
kuchéériza. Given kodééka za 'to just cook', we can also see that the penult position to which the rule is sensitive is utterance-penult.

The M1 pattern is found in a number of other tenses, summarized in (9) with the toneless stem -rakuoriz- 'make release' and -káraangiz- 'make fry', forms from which most melodic patterns can be inferred.

iza	vara[karangiza
vaaku[rakuoriza	vaaku[káraangiza
vááka[rakuoriza	vááka[káraangiza
vaa[rakuorizi	vaa[káraangizi
váá[rakuorizi	váá[káraangizi
vátaa[rakuoriza	vátaa[káraangiza
arika[rakoorizı	varika[káraangizı
vari[rakuorizı	vari[káraangizı
vmo[rakuorizi	umo[káraangizi

immediate future
immediate past
completive-focus recent past
completive-focus hodiernal perfective
completive-focus hesternal perfective
before
future rika-e
future ri-e
i-nominalization

In the case of verbs inflected in one of the 9 M 1 categories, there is just concatenation of transparent segmental morphemes including roots some of which have a tone and others of which do not, plus affixes - there are no melodic tones. In M1, toned roots manifest that tone on the first syllable, and there are indicators that this tone is on the first stem syllable (obvious in (9), indirect evidence exists under other patterns). Leftward Spreading and a general rule about long penults derives the rest of the tonal facts. The interesting case is everything else, the other dozen or so patterns which also add an inflectional tone.

2.2. Melodic patterns

There are about ${ }^{3}$ a dozen other patterns where the lexical tone of the root is supplemented with a floating tone of some sort, plus other segmental morphemes. The table in (10) includes the proposed tonal features, the justification of which is the purpose of this paper.

(10)	M^{4}	Toneless	Toned	exemplar tense	melody
	2	vari[rákúơriza	vara[karáángízá	indefinite future	$\mathrm{T}_{\beta, \mathrm{F}}$
	3	nı va[rákúớrizı	nı va[káráángizı	crastinal future	T_{2}
	4	váá[rákouriza	váá[káraangiza	remote past	T_{1}
	5	rakuoriza	karáángízá	imperative	$\mathrm{T}_{\beta, \mathrm{F}}$
	6	ta[rakúv́riza	ta[karaanga \sim ta[karáángá	negative imperative	$\mathrm{T}_{\beta, \mathrm{F}} \sim \mathrm{T}_{\beta}$
	7 a	ka[rakươ'rízí	ka[karáángízí	immediate imperative	$\mathrm{T}_{2}+\mathrm{T}_{\mathrm{F}}$
	7b	vaaka[rá'kúórízá	vaaka[ká'ráángízá	explanatory past	$\mathrm{T}_{1}+\mathrm{T}_{\mathrm{F}}$
	8	váá[rakouriza	váá[karaangiza	stative	$\mathrm{T}_{\text {[}}$
	9	vaa[rákúơrízí	vaa[káráángízí	hesternal perfective	T_{F}
	10	va[rákúúrizi	va[karaangizi	hodiernal perfective	T_{β}

[^2]11 vara[rakooriza vara[karaangiza counterfactual $\mathrm{T}_{\mathrm{F}, \mathrm{L}}$
The first fact which should be obvious from these examples is that something generally happens to the lexical tone of toned roots, and another tone is usually added. In parsing these examples, it is important to recall the effect of Leftward Spreading, which spreads tone to the left. We can undo the effect of that rule in the first row, the representatives of M2, and arrive at the more remote representations varirakúơriza and varakaraangizá. Factoring out the effect of LS, we observe that there is an added tone towards the left edge of the stem in toneless stems, and in toned stems the lexical tone is gone but the final vowel has the added tone. Our analytic goal is to understand how pre-surface representations derive by combination of melodic tones plus whatever lexical tones may exist in a given root.

Given the understanding that lexical tones are suppressed or deleted in the presence of a melodic tone, we turn to the primary questions about melodic tones: how many tones are there in a melody, where do these tones go, and how many patterns are there? In order to answer these questions, we also need an analytic framework - how would we know the answer? In this framework, there is a close (but not infinitessimal) relation between observation (data) and rules. We look to see how underlying forms are changes, when two or more instances of what is superficially the same thing ("a tone") act the same, we attribute that to the fact of being the same, and when two things act different despite being superficially the same, we conclude that they have some different property. This program of seeking "same in this respect, different in that respect" is driven by particular rules, thus there is a rule that links a melodic tone to the second stem syllable, and a different rule that links a tone to the final syllable. This fact motivates positing different features that the rules refer to. Then the goal of analysis is to discover the simplest system of rules in the grammar that generates this system of alternations.

To anticipate the analysis, sometimes lexical tone is completely deleted, and sometimes it is phonetically surpressed but remains phonologically. Based just on the fact that lexical tone is not surface co-present with a melodic tone, we need (a) a rule to eliminate lexical tone which implies (b) a way to distinguish melodic from lexical tones. Distinction (b) can be encoded in the classical autosegmental way, that melodic tones are floating, and lexical tones are (at the pertinent point in the derivation) associated to a vowel, the stem-initial. Thus we have (11), a rule eliminating lexical tone before a (floating) melodic tone.

```
Tone Deletion
T}->\emptyset T
V
```

We will refine this analysis below, in light of evidence for a distinction between phonological deletion versus phonetic suppression, insofar as sometimes there is a trace of an apparently-deleted tone.

A melody can have one or two tone elements. The location of those elements depends on the melody, possibly interacting with other tones in the representation. The melodic content column in (10) mnemonically classifies these tones in terms of where they go, which is the fact that is most-directly accessible from this table. ${ }^{5}$ Specifically, there is a tone assigned to the final syllable $\left(\mathrm{T}_{\mathrm{F}}\right)$, one assigned to the second syllable $\left(\mathrm{T}_{2}\right)$, one assigned to the stem-initial syllable $\left(\mathrm{T}_{1}\right)$, one to the word-initial syllable $\left(T_{[}\right)$not to mention a variably-positioned tone $T_{\beta, F}$; there are also two combinations, namely

[^3]final H plus stem-initial or final plus second syllable. Once we understand the properties of the 4 elementary melodic tone features, we turn to the properties of bitonal patterns, which combine the final-targetted tone with one of the two other stem-internal tones.

Most of these tones are positioned with respect to the beginning of the stem. This raises the question how "stem" is represented in phonology. One possibility is to invoke a representational entity "[" which is part of the phonological string and is a thing to which the rule may refer. Alternatively we might assume a cyclic derivational reconstruction of "stem", where just the stem is submitted to the phonology in an early derivational phase, then later, more parts of the verb are re-submitted to the phonology in a manner familiar from Lexical Phonology. At this point there aren't clear and strong arguments for a particular solution, so I adopt the linearized boundary account since that makes it easier to follow how the rules apply, and immunizes the analysis from irrelevant changes in syntactic theory. To be clear, a reasonably viable alternative is that the rule in question simply links the tone to the leftmost vowel. But in standard rule formulation, "leftmost" or "rightmost" are not primitive rule relations, they are reconstructed by explicit reference to a domain-defining bracket - thus even in conventional rule theory, "specifically-leftmost" requires a left-boundary indicator in the rule.

(12)

The derivation of M4 verbs is rather simple. Because of the addition of a melodic tone, the lexical tone deletes in /vaa[káraangiza $\mathrm{T}_{[} /$. The melodic tone is then mapped to the vowel following the stem-initial bracket. This does not cover all of the details of the M4 pattern which we will return to, but it covers the majority of the data.

The stative tense attests the M8 pattern, where tone is on the word-initial syllable. The only difference between M4 and M8 is that M8 refers to word-initial position rather than stem-initial position, indeed these two could be reduced to a single melody instantiated by one rule (initial association) and one tone (initial tone), distinguished in terms of different cyclic level of application (stem-level vs. word-level). Reducing M8 to a level-ordering difference from M4 is not a cost-free analysis - the phonological account may be simplified, but the overall grammatical analysis is possibly made more complex, therefore in lieu of a stronger argument that level-ordering is the correct device for distinguishing these tone patterns, I assume that the distinction is solely in terms of the phonological rules and representations - the kind of boundary which the M8 tone aligns to.

Word-initial mapping

The M3 tone is a different tone from T_{1} and $\mathrm{T}_{[}$, and it is subject to a different rule, specifically one mapping the tone to the second syllable after the stem boundary. As expected, T_{2} causes deletion of lexical H in $/ \mathrm{nI}$ va[káraangizı $\mathrm{T}_{2} /$, and second-syllable mapping (14) applies to both nı va[rakuorizı $\mathrm{T}_{2} /$ and $/ \mathrm{ni}$ va[karaangizi $\mathrm{T}_{2} /$.

Second-syllable mapping
T_{2}
\vdots
$[\sigma \sigma$
In a moment, I explain more of the details of the second-syllable tone, but first we will scrutinize the logic of abstract features versus bare H tones.

The difference between the remote past and stative verb forms - remote yáárákvora versus stative yáárakovra - is hard to account for if one only has a distinction between H and \emptyset (or even H and L , or H, L and \emptyset). The verb root in this case is toneless, so what would we add to the underlying segmental structure to derive these different surface tones? On the face of it, we just add one H in both cases, so why do the Hs go to different positions? Given just H and Ø, only a two-way melodic system would be possible, yet we have a much richer system than that in Logoori. Plainly, we are required to add a substantial element of abstractness to the rule and representation system, if we are to generate multiple phonological patterns.

A common approach to this problem is to incorporate morphological features into the phonological analysis, so that the rule which stands as the alternative to (12) is triggered by a feature [remote] and the alternative to (13) is triggered by a feature [stative], these being language-specific morphological features encoding the morpho-syntactic and semantic properties of these tenses.

In doing this, we must abandon the premise that phonological features are phonetic (which is the conclusion drawn here). Once we abandon that assumption, there is no reason to only admit nonphonological features into the phonology, and no argument against admitting purely phonological features which regulate how particular tones behave. Indeed, we can alternatively say that only purely phonological features enter into the phonology, a rather obvious conclusion to draw, yet one which has escaped substance-dependent theories of phonology. Moreover, the particular morpho-syntactosemantic feature [remote] is inadequate, since the stem-initial pattern is found in other tenses which are not 'remote', for example the past habitual and future consecutive tenses also have this melodic pattern (thus a three-way disjunction of trigger-features over three morpholgical categories would be necessary).

$$
\begin{array}{ll}
\text { má kú[káraangiza } & \text { 'then we make fry' } \tag{17}\\
\text { má kú[rákouriza } & \text { 'then we make release' } \\
\text { kwáá[káraangizaa } & \text { 'we usually make fry' } \\
\text { kwáá[rákourizaa } & \text { 'we usually make release' }
\end{array}
$$

This exposes the fundamental flaw in invoking morphosyntactic features in tone mapping. Whenever a melody as attested in multiple grammatical contexts, we end up multiplying the number of rules required to perform the linking. The various "possessive" suffixes of English $-s$ as in 'Bill's' do not always signal ownership of property ('the theorem's proof'), instead, numerous morphosyntactic configurations converge on this underlying suffix.

An alternative abstract and purely phonological analysis might call on a count of a single object, H tone, to distinguish different behavioral patterns. Under this approach, we could posit a single H in the stative and two Hs in the remote, then devise a system of rules which translates the count of floating Hs into a specific surface pattern. As it happens, there is a relation between "two Hs" and "stem-initial", "one H" and "word initial", which can be encoded in a computation, and one could encode the relation between "two Hs" and "word initial", "one H" and "stem-initial" just as efficiently. The M3 pattern of second-syllable assignment could then be encoded via a sequence of three Hs plus a rule mapping one of those tones to the second stem syllable, and the most logical next step would be to encode the M2 pattern as 4 H tones. A sketch of such an analysis starts as in (18).

(18)	M8	M4	M3	M2	
H	HH	HHH	HHHH	Representation	
	$\# \mathrm{H} \#$	\#HH\#	\#HHH\#	\#HHHH\#	Rule
\vdots	\vdots	\vdots	\vdots		
$\# \mathrm{~V}$	$[\mathrm{~V}$	$[\sigma \sigma$	$[\mathrm{V}$ V		

The double word-boundary fence is necessary in each rule to encode the exact number of tones in a melody which undergo a particular mapping rule, otherwise a rule that applies to a shorter string of tones would overapply to any longer tone string. Alternatively it could be stipulated that these rule must be ordered so that the longest applies first (in fact, this is the SPE algorithm for rule abbreviations, though the rules are not abbreviable by any proposed notational convention). This approach simply encodes each behavioral package as a number, linguistically represented as that many instances of H , effectively reifying the numeric aspect of table (10).

At least two problems face this approach. First, the higher the numeric index of the melodic pattern (recall that melody numbers are conventional and reflect order of discovery), the more complex the rule - a rule applying to melody-index 7 therefore applies in the presence of exactly 7 H tones. This would guide the assignment of numbers so that any patterns requiring more than one rule would have to be assigned low numeric indices (thus avoiding the cost of specifying exactly 7 tones in 4 rules). Second, some patterns involve multiple melodic tones, which is a potentially fatal problem for the theory that melodies are unstructured sequences of a single object (H tone). If stem-initial tone is encoded as 2 Hs , final tone is encoded as 7 Hs , and (for example) the imperative pattern is 9 Hs , concatenation of initial and final melodic tones would be identical to the imperative pattern (which is not the case). Instead, the two-H patterns would have to be encoded as a distinct number of H marks, and in particular the final H of bi-melodic patterns would have nothing in common with other melodic patterns having a final H - but in fact, they do, as we discuss below.

The point being made here is that some degree of abstractness and non-phoneticness is required, in order to account for the richness of Logoori's verb inflection system. No advantage accrues to positing that these distinctions should be based on a count of a single representational object, as opposed admitting a richer but simpler set of representational objects.

In the case of word-initial mapping for M8 and stem-initial mapping for M4, there is relatively little else to say at this point. All that happens is that lexical tones are eliminated and a melodic tone goes to the appropriate position. The second-syllable M3 does pose further complications, discussed in 2.3, beyond the primary question of where the melodic tone goes in the first place (the complication is that this tone sometimes spread once to the right). We now turn to the fourth pattern, M 2 i.e. $\mathrm{T}_{\beta, \mathrm{F}}$, which manifests a pattern of conditional mapping, where the tone may be on the second mora or on the final syllable, a pattern that arises under most of the melodic patterns. This is a rather complex tone, involving two features (because it has two behaviors), and it is also the most widely-attested pattern. It
will be helpful in understanding the analysis to know that " T_{β} " refers to a tone which can link to the second mora, and " T_{F} " refers to a tone that can link to the final syllable - a distinction which is exploited in the rule system. The split behavior of the M2 tone means that this tone has both of these tonal sub-features.

The first step in analyzing M2 is to show that left-edge positioning (in toneless roots) is to the second vowel rather than second syllable, the latter being the target for the M3 tone. Therefore we compare a fuller paradigm of M3 and M2 in (19). Looking only at the relatively-longer stems, focusing on the bolded targets, it is clear that with toneless stems, the M2 tone goes to the second vowel of the stem, but the M3 tone goes to the second syllable, the difference hinging on what happens with rootinitial long versus short vowels. ${ }^{6}$
toneless verbs haanzuukizaang 'be causing to yell', ganaganaang 'be thinking', haanzuukiz 'cause to yell', rakuuriz 'cause to release', veezeger 'belch', ganaganir 'think for', ganagan 'think', rakuur 'release', taandur 'tear', guriz 'sell', gurizaang 'be selling', biim 'measure', rag 'promise', sh 'grind'; toned verbs, taangaaziraang 'be announcing for', vodong'anaang 'be going around', taangaazir 'announce for', karaangiz 'cause to fry', suundurany 'over-pour', vodong'anir 'go around for', vodong'an 'go around', karaang 'fry', cheeriz 'greet', karag 'judge', karagaang 'be judging', deek 'cook', veg 'shave', ty 'fear'.

M3 toneles	M2 toneless	M3 toned	M2 toned
nı va[háánzúŕkizaange	vari[háánzơkizaanga	nı va[táángáázıraange	vari[taangáázíráángá
nı va[gánágánaange	vari[gánáganaanga	nı va[vódóng'ánaange	vari[vodóng'ánáángá
nı va[háánzướkizı	vari[háánzuokiza	nı va[táángáázırı	vari[taangáázírá
nı va[rákúớrizı	vari[rákóórriza	nı va[káráángizı	vari[karáángízá
nı va[véézégére	vari[véézegera	$\mathrm{nı}$ va[sứ̛́ndứrányı	vari[suondơrányá
nı va[gánágánırı	vari[gánáganıra	nI va[vódóng'ánırı	vari[vodóng'ánírá
nı va[gánágáne	vari[gánágana	nı va[vódóng'áne	vari[vodóng'áná
nı va[rákúvrı	vari[rákớ̛́ra	ni va[káráange	vari[karáángá
nı va[táándớrí	vari[táándura	nı va[chéerízí	vari[cheerízá
nı va[gúrízí	vari[gúríza	nı va[kárágé	vari[karágá
nı va[gúrízáange	vari[gớrízaanga	$\mathrm{nı}$ va[kárágáange	vari[karágáángé
nı va[bírmí	vari[bímma	nı va[dééké	vari[deeká
nı va[rágé	vari[rágá	nı va[végé	vari[vega
nı va[shí	vari[shá	nı va[tyí	vari[tya

These data diagnose the difference between a second syllable and a second vowel target. The second syllable target is consistently "second syllable" for toned and toneless stems, whereas the second vowel target is an alternative to the final vowel target: V_{2} is what you get with toneless stems. Added to a toneless root, the tone is on the first syllable if the syllable is long, and on the second syllable if the first syllable is short.

The dependence of the M2 docking site on lexical tone hints at a number of analysis paths, such as final assignment plus leftward movement, or leftward assignment being contextually blocked by lexical tone with final assignment being an elsewhere case. To decide which analysis is better, we have to construct and explicitly compare analyses. Explicit comparison is necessary because the substancefree framework does not appeal to extra-phonological filters preferring "natural" rules, it depends on

[^4]net grammatical simplicity. To account for the most significant difference of assignment under M2, we focus first on the toneless vs. toned stem distinction. Some of the possible analyses are that:
(20) V2 is targetted irrespective of stem tone

Tone shifts from V2 to final if there is a preceding tone
Final V is targetted irrespective of stem tone
Tone shifts from final to V2 is there is no preceding tone
V 2 is targetted if there is no preceding tone in the stem
Otherwise the final is targetted
Final is targetted if there is a preceding tone
Otherwise V2 is targetted
However, this descriptive skeleton is not quite right since CV and CVCV H stems have no tone on any vowel. Although the above formulae predict [*varinwá, *varivegá], we actually get [varinwa, varivega]. This can be attributed to the fact that the final vowel either has a lexical tone, or it is immediately preceded by the lexical tone, which suggests a familiar form of tone-after-tone blockage. Therefore we could restrict final-association so that it only links to a toneless vowel immediately after a toneless vowel. But furthermore, this would mean that in the case of [varivega], the lexical rootinitial tone still exists, so either final association precedes lexical-tone erasure, or lexical-tone erasure is not always full deletion, it may be 'suppression'.

The comparison of M2 and M3 allows us to strongly argue for suppression as opposed to full deletion. In M3, we have full deletion, in M2, we have phonetic suppression. The quandry of [varivega] from/varivéga $+T_{\beta, \mathrm{F}}$ is that the lexical tone is deleted because of the melodic tone, but the melodic tone is deleted because of the lexical tone. The solution is that both behaviors (suppression and deletion) exist in Logoori - deletion is actual removal, but suppression is acquisition of a feature. Moreover, there may be a difference between suppression-by-feature and suppression-by-nonassociation. First we consider the evidence for suppression-by-feature. Observe in (19) that toned and toneless roots are exactly the same in M3: H spreads to the initial syllable by Leftward Spreading (ni vagánágáne, nı vavódóng'áne). In this respect, toned and toneless roots differ in M2, because toneless roots allow spreading to stem-initial position in toneless stems, but toned stems do not (varigánágana, varivodóng'áná). That is, the expected initial lexical tone still has a phonological effect, in blocking LS, even though the initial syllable is not pronounced with that lexical tone. In other works on Bantu (Kenstowicz, Jones, Marlo, others) this kind of blocking behavior has been accounted for by positing a three-way representational distinction between H, L and \emptyset, where specified L is the trace of a deleted H . The difference between those accounts and the present account is just theoretical interpretation, that the present analysis does not directly impute a phonetic property of specifically "lowered pitch" to this blocking tone, it simply says that there is a phonological tone which is distinguished from phonetic H by not being physically realized as raised pitch, as specified in the phonetic component. ${ }^{7}$ Notationally, it is arbitrary what we call that property, but mnemonically it can be called "L", which carries no phonetic implications. In addition to absolute deletion (11) which eliminates the lexical tonal specification in M3 (and other patterns), Logoori also has Tone Suppression, preliminarily formalized as (21), as a category-adding operation.

[^5]

It is a pertinent matter to determine which tones trigger Tone Suppression and which trigger Tone Deletion (11), which we take up below. A good first approximation is that T_{β} causes suppression, as indicated in (21). The data in (19) also tells us that the M3 tone T_{2} triggers absolute deletion.

2.2.1. EXCURSUS ON DATA

It is important to be clear about the factual nature of this blockage and the regularity of LS, since the phonological distinction between nullification coming from an underlying tone versus suppression as L coming from an underlying tone is a strong argument for basing phonological features on phonological behavior rather than just physical realization. LS is optional and in some cases there are questions of data interpretation. The grammar (ch. 2) discusses many details of phonetic pitch-realization underlying transcriptions, one being that in a sequence $\mathrm{H}^{*} \cdot \mathrm{H}$ or $\mathrm{H}^{*} \mathrm{~L}$, the final syllable in the H^{*} span usually has a pitch boost when that syllable precedes the penult, for example the final syllable [ré] in [cháá'mégéré] 'mushroom' tend to be noticeably higher than preceding [mé] in [Icháá'mégére" 'táyáari] 'ready mushroom', to the point that the output could be transcribed as [Icháámegeré 'táyáari].

Additionally, the phonetic transition from a toneless to toned syllable is attentuated in the first syllable of the tone's domain. Presumed phonological [varikákáre] 'they will slice' is more narrowly transcribed as [varikākáre]. The same form can also be physically realized as [varīkákáre], in general the first syllable that a tone is associated is often somewhere between toneless and fully-toned in pronunciation. Given only the phonologically-justified two-way distinction of levels, a transcription like [varikákáre] carries with it a level of uncertainty as to what the phonological output is. At the boundary between toneless and toned syllables, it is always necessary to make a judgment whether that boundary syllable is raised sufficiently to be deemed to be phonologically toned. Because of the possibility of phonetic raised pitch-target anticipation in [ri] of [varikákáre] as well as delays in pitchraising in [varíkákáre], we cannot always be sure what the phonological output is.

In M3 examples such as [nı vagánágánaange], [ni vavódóng'ánaange], the final tone-marked syllable always has the highest pitch. The most frequent transcription-types for such examples are [ni vagánágánaange] and forms like [nı vaganágánaange], and [nı vaganagánaange, nı vágánágánaange] are very infrequent. This is a consequence of the fact that LS usually applies at least once, but also tends not to apply across the stem boundary as one would find in [nı vágánágánaange]. As discussed in the grammar, there are numerous complications in the tendency to spread H to the left whereby phrasally-contributed contexts for the rule's application tends to override purely word-internal application. Even though there is usually no spreading to the first two syllables of [izibárási], we also usually encounter [varíkáváríz-Ízíbárási] or [váríkáváríz-Ízíbárási], that is, when a context for LS is created at the phrasal level, the usual resistances to spreading found in word- and stem-initial position are overcome.

The phonological distinction between varigánágana vs. varivodóng'áná, or varirákứ̛́riza versus varikaráángizá hinges on the fact that the syllable after [ri] is most-frequently noticeably higher in varigánágana and varirákúv́riza, and almost never that high in varivodóng'áná and varikaráángizá. Minimal pair between mandatory LS vs. forbidden LS cannot exist at least in citation forms, because toned roots have their tones at the right end of the stem and toneless stems have their tones at the left end, and in $\mathrm{CV}(\mathrm{CV})$ stems where there is the potential for overlap of patterns, toned stems do not have tone at all. We will see below phrasal minimal pairs illustrating strict blockage vs. non-blockage.

Proposed surface representations of varideeká, varivega, varitya, varishá and varirágá follow.

One way in which a tone might be apparently deleted if is it is actually removed from the representation, as in M3 verbs. The second is that it may bear a distinctive property distinguish it from an ordinary tone - it is T_{L}, as in varideeká. The third is that the tone may be blocked from association because of a tone on the immediately-preceding vowel (varivega). Of course, we do not know from the data whether the missing final tone in varivega is associated, or whether it too is T_{L}, that is a detail that has to emerge from the formal analysis.

2.2.2. DECIDING ON THE ANALYSIS

Given the pattern of facts seen in the outputs, we now consider competing rule formalizations for computing those outputs. A prerequisite for doing this is a theory of phonological computations, for this I will rely on the stripped-down version of classical autosegmental notation embodied in Simple Phonology as represented in Phonological ontology: rules simply add or remove a specified entity (node or relation) in a rule-specified context. In terms of stating contexts, we require a theory of and notation for stating a contextual blocking condition, which is something that been ignored in formal rule theory for a long time in favor of UG stipulations such as the OCP. This paper eschews substantive UG stipulations and only attributes to UG statements of what mechanisms exist for formalized rules. A blocking condition is such a mechanism, it says "If X is the case, the rule does not apply", thus blocking conditions are conceptually viable. In formulating the rule to map the melodic tone to the second stem vowel, the rule can either be stated as context free (not referring to anything about preceding tone), or it can be context-sensitive applying only when "there is no preceding tone", i.e. a preceding tone is expressed as a blocking condition. In (23b), "*" indicates the blocking condition, if there is a tone in that position, the rule is blocked. ${ }^{8}$
a. General V2 linking

b. Restricted V2 linking
*T T'

Obviously, (23a) is simpler than (23b). Final linking can be formalized in multiple ways, either with explicit triggering by a preceding tone or not; or by explicit blockage by a preceding toned vowel.
a. General final linking

V]
b. Tone-Triggered final linking T T'
V] \#
c. Tone-restricted final linking * T T' $\left.\begin{array}{ll}\mathrm{l} & \vdots \\ \mathrm{V} & \mathrm{V}\end{array}\right] \#$

[^6](24a) is the simplest of these rules, (24c) is the least simple, yet it turns out to give the simplest grammar. The simplicity of an individual rule is not the deciding factor between analyses, what decisively selects the analysis from equally-accurate sets of rules is the net simplicity of the system.

There are three main approaches to generating the M2 pattern. One is to directly map the melodic tone to the correct position and put the burden on each individual rule to decide where and whether a tone. There being two loci of association, there are two rules each of which shoulders some burden of directly positioning tone in the correct position. Alternatively, there may be a primary locus of initial association and a conditional locus of reassociation, which leads to options to assign tone to V2 then reassigning to the final, or initial association to the final and reassociation to V2. The evaluation of analyses thus reduces to a simple matter of stating the analyses, and comparing them for simplicity. Off the table in this formal and explicit approach is the common practice of selectively disfavoring certain aspects of rule statement such as declaring that "H blockage" is a universal free option encoded in UG (because attempts to predict when such blockage - known as the OCP - is enforced and what exact mechanism is invoked have spectacularly failed to even reach the level of observational adequacy).

Under approach 1, we state that tone maps to V_{2} when that vowel is not immediately preceded by a toned vowel as stated in (25a). Subsequently, H maps to the final vowel, provided that the target does not bear a tone, as stated in (25b).
a. V2 linking

[V V
b. Final linking

* T T ${ }^{\prime}$ F
$\left.\begin{array}{ll}\text { | } & \vdots \\ \mathrm{V} & \mathrm{V}\end{array}\right]$

Notice that the two rules also refer to different features on the final vowel, notated as T_{β} versus T_{F}. The reason for this is that M2 instantiates two phonologically-required differences of representation, which as we will see are independently required. First, some patterns have just the V_{2} pattern without the final H ; second, other patterns have just the final H without the V 2 variant. We might initially hypothesize that the rules given in (25) refer to a single kind of melodic tone feature such as "F", but ultimately this tone has to be bifurcated into two behavior patterns, and it is better to start with a correct analysis that to start with an incorrect analysis based on incomplete analysis.

Approach 2 would assume unconditioned mapping of tone to V_{2} followed by shift-to-final when a tone immediately precedes, whereas approach 3 would assume unconditioned final mapping of followed by shift-to-V2 when V_{2} is toneless. The initial linking rules are respectively (26a) for approach 2 and (26b) for approach 2.
(26) a. Absolute V2 linking

[V V
b. Absolute final linking

T $\mathrm{T}_{\mathrm{F}}^{\prime}$
V] \#

Then the repair rules shift tone to the opposite end either in the case of a blocking tone under approach 2 , or in lieu of a blocking tone under approach 3 .
(27)
a. $\begin{gathered}\left.\text { Forward } \begin{array}{c}\text { shift } \\ \mathrm{T}_{\beta} \\ \\ \\ \\ \\ {\left[\begin{array}{lll}\mathrm{V} & \mathrm{V} & \ldots \mathrm{V}\end{array}\right]}\end{array}\right]\end{gathered}$

b. Backward shift

Finally, both approach 2 and 3 require some repair for the case of CV and CVCV toned stems, where the melodic tone is lost. This being the case where the lexical tone stands immediately before the final tone, (28) can be posited to convert varivegá to [varivega].

It is not hard to see that the two-rule combination (25a,b) is simpler than either (27), (26a), (27a) or (27), (26b), (27b). In a fully-formalized account, these rules are graphic representations of different sets of propositions which constitute the specific rules (an appendix will eventually be provided to give those propositions). What is counted is the set of elementary representational propositions abbreviated by these specific notations. There is a fairly straightforward relation between standard minimalist autosegmental notation and propositional content, e.g. order of elements represents precedence, lines represent dominance.

This provides the bulk of the rules required for initial tone association, we next consider rightward spreading as a case of other things that melodic tones do, after which we consider combinations of melodic tones and sub-variations of "final tone".

2.3. Other melodic effects

There is more to the melodic system than just initial tone mapping. One example of such behavior is found in the M3 pattern, examples repeated below.

```
M3 toneless M3 toned
nı va[háánzóókizaange nı va[táángáázıraange
nı va[gánágánaange nı va[vódóng'ánaange
nı va[háánzúv́kizı nı va[táángáázırı
nı va[rákúớrizı nı va[káráángizi
nı va[véézégére nı va[súv́ndớrányı
nı va[gánágánırı nı va[vódóng'ánırı
nı va[gánágáne nı va[vódóng'áne
nı va[rákúori nı va[káráange
nı va[táándớrí nı va[chéérízí
nı va[gúrízí nı va[kárágé
nı va[gúrízáange nı va[kárágáange
ni va[bímímí no va[dééké
ni va[rágé nı va[végé
nı va[shí
nı va[tyí
```

Based just on assignment to the second syllable, we predict incorrect *nı va[gánáganaange, *nı va[vézézégere, *nı va[gánáganırı, *nı va[gánágane, *nı va[táándórı, *nı va[gúrízı, *nı va[gúrízaange.

The remedy is quite simple: this H spreads one vowel to the right, therefore the third syllable might end up having tone. This is surface-evident whenever the second syllable is short, as in the case in these stems.
(30) Rightward Doubling

Application of (30) is obvious in nı va[gánágánaange, nı va[véézégére, nı va[gánágánırı, nı va[gánágáne, nı va[táándớrí, *nı va[górízí and nı va[gơrízáange. When the second syllable is long, it is unclear whether Rightward Doubling applies, see nı va[háánzúúkizaange, nı va[háánzúókizı, nı va[rákúŕrizi versus nı va[rákúvrı. If the tone is initially on the first mora of a long vowel, we would start from nı va[háánzúvkizaange, then Doubling would directly derive the correct surface form. However, we would also expect *nı va[rákúóri: but, we independently know that there are rules in the language realizing long toned penults with falling tone. The form nı va[rákúvri can be explained on the basis of more general Fall/ Level phonotactics, or this could be evidence for a restriction that Doubling does not apply within a syllable, only across syllables. Insofar as any restriction on a rule is a formal complication, the simplest grammar is one that uses already-necessary resources, thus we adopt the prosodically unrestricted doubling rule (30).

The point of greater significance for the analysis of Logoori melodic tone behind Rightward Doubling is that this rule only applies to the second-syllable tone, not to every tone. See for example M8 stative yáárakvora, not *yáárákvora, M4 remote past yáárákvora not *yáárákúvra. M2 indefinite future varigánáganira, not * varigánágánira. The only tone which spread rightward is the second syllable tone, as specified in the rule of tone doubling. The T_{2} property of this tone has two phonological functions, one being to trigger the appropriate initial-association rule, the other being to trigger Rightward Doubling. The T_{2} property has a third phonological function which needs further analysis, in that penult Fall versus Level tone is also a function of melodic pattern. Fall exists on a long penult in M1 and M3, and level tone is found in M2, M4 (in other patterns, penult tone comes from leftward spreading of final tone).

2.4. Further patterns of final tones

In the realm of "other complications" leading to further tonal subclassification, final melodic tones have realizations other than those of the V2/final pattern seen in M2. M10 is similar to M2 in that toneless stems have tone to the second vowel, but lexically toned verbs have no tone at all, neither the lexical tone nor the expected final tone.

$$
\begin{array}{ll}
\text { M10 toneless } & \text { M10 toned } \tag{31}\\
\text { va[gánágani } & \text { va[vodong’ani } \\
\text { va[rákứ́ri } & \text { va[karanji } \\
\text { va[táánduri } & \text { va[cheerizi } \\
\text { va[gúrízi } & \text { va[karaji } \\
\text { va[bíimi } & \text { va[deechi } \\
\text { va[rájí } & \text { va[veji } \\
\text { va[shíi } & \text { va[tyii }
\end{array}
$$

How can this be harmonized with the analysis of assumed final tone in M2? The crucial rule difference between M2 and M10 is that Final Linking (25b) does not apply to the M10 tone. M2 and M10 are similar up to a point - they share application of V2 Linking (25a) - but they diverge in that the M10 tone does not undergo the rule that the M2 tone undergoes, namely Final Linking (25b). This was anticipated in the analysis of M2, where the sub-tonal feature F is required to trigger that rule, and the M2 tone does bear F. By contrast, the M10 tone is bare T_{β}, meaning that it can be assigned to the second mora by V2 Linking, but since it is not T_{F}, the tone remain unassociated when V2 linking fails, which happens when the stem is lexically toned. The contrastive derivations of varákúv́rizi, vakaraangizi, varirákúúriza and varikaráángizá then procede as follows.
a.

$\begin{array}{cc}\text { b. } & \mathrm{T}_{\beta} \\ & \vdots \\ & \text { va[rakưrizi }\end{array}$

$\begin{array}{cc}\text { c. } & \mathrm{T}_{\beta} \\ \mathrm{va}[\text { rak } & \\ \end{array}$

d. va[rákúớrizi

vari[rákúớriza

vari[karáángízá

The underlying form is step (32a). In (32b), V2 Linking (25a) applies as expected in both forms of the toneless stem, leaving only LS to apply. In step (32c), Final Linking (25b) links the tone to the final vowel in varikaraangiza but not in vakaraangizi, since the M10 tone lacks F, therefore it is simply not associated. The phonological output (32d), then includes the effect of LS. A failure of H to be realized at all in toned stems, where toneless stems have the melodic tone on V2 as expected, follows from this sub-distinction between T_{β} and $\mathrm{T}_{\beta, \mathrm{F}}$.

The difference between M6 and M10 rests in the optionality of F-marking in M6. As we see in the fuller table of M6, toned stems are always toneless if the stem is so short that the preceding-tone condition blocks Final Linking. Longer toned stems attest both final H and no final H .
M6 toneless
ta[gánáganaanga
ta[rákúóriza
ta[vézegera
ta[gánáganıra
ta[gánágana
ta[rákúóra
ta[táándura
ta[góríza
ta[gúrízaanga
ta[bíma
ta[rágá
ta[shá

M6 toned (no F)	M6 toned (F-marked)
ta[vodong'anaanga	ta[vodóng'ánángá
ta[karaangiza	ta[karáángízá
ta[suonduranya	ta[suondórányá
ta[vodong'anra	ta[vodóng'ánírá
ta[vodong'ana	ta[vodóng'áná
ta[karaanga	ta[karáángá
ta[cheeriza	ta[cheerízá
ta[karaga	ta[karágá
ta[karagaanga	ta[karágáángá
ta[deeka	ta[deeká
ta[vega	ta[vega
ta[tya	ta[tya

The first column of toned stem data is parallel to the M10 hodiernal perfective, and the competing forms like tavodóng 'ánáángá are parallel to various M2-inflected toned verbs. Thus we have representational competition between T_{β} and $\mathrm{T}_{\beta, \mathrm{F}}$. Toneless stems are uniform in having tone on the second vowel, because V2 mapping is blind to the presence of F, it only requires \#. Focusing on the variation between T_{β} versus $T_{\beta, F}$, the question can be reduced to stating the possible analyses of such variation. The allomorphy solution says that there is a free choice in word-formation between T_{β} and $T_{\beta, F}$ for these tenses. The phonological rule approach says that there is optional rule within the phonology, where T_{β} becomes $T_{\beta, F}$ or $T_{\beta, F}$ becomes T_{β}. On the face of it there is no simplicity advantage to the phonological rule approach, in fact there is a clear disadvantage that this variation is limited to the negative subjunctive and the M6 pattern, therefore some additional feature Z would still be required to limit the tenses that manifest this purported phonological F-deletion rule. This additional complexity tilts the scales in favor of free allomorphic seletion.

Two remaining cases of final tone require explanation. The first is the imperative, which has the peculiarity that L verbs do not manifest the melodic tone at all.

M5 toneless	M5 toned
[haanzuokizaanga	[taangáázíráángá
[ganaganaanga	[vodóng'ánáángá
[haanzưkiza	[taangáázírá
[rakuoriza	[karáángízá
[veezegera	[suondứrányá
[ganaganıra	[vodóng'ánírá
[ganagana	[vodóng'áná
[rakuora	[karáángá
[taandora	[cheerízá
[guriza	[karágá
[gurizaanga	[karágáángé
[buma	[deeká
[raga	[vega
[sha	[tya

This could be handled by a further representational property, a special mark which prevents this tone from being associated if the stem does not have a tone, in fact it suggests that the imperative might be T_{F} (hence toneless verbs do not not have H on V2). The problem with that analysis is that what would happen, and does in other tenses, is that toneless verbs receive a final tone - but toneless verbs in the imperative actually receive no tone.

A better way of looking at the matter is to see how the imperative is phonologically unique, in that unlike other verb forms, stem-initial position is also word-initial. With no modications of the grammar, we would predict that /rakoora $\mathrm{T}_{\beta, \mathrm{F}} /$ would undergo V2 linking (23b), which it does not. The simplest remedy is to restrict that rule, requiring that something - at least a subject prefix - precede the stem. In the imperative, nothing precedes the stem within the word, therefore no rule assigns melodic tone in toneless verbs to the stem.

Another subset of final-tone cases needing to be dealt with is M11 in the counterfactual tense, examples in (36).

Toneless
vara[haanzovkizaanga
vara[ganaganaanga
vara[haanzovkiza
vara[rakouriza
vara[veezegera
vara[ganaganira
vara[ganagana
vara[rakuora
vara[taandura
vara[guriza
vara[gurizaanga
vara[biima
vara[raga
vara[sha

Toned
vara[taangaazıraanga
vara[vodong'anaanga
vara[taangaazıra
vara[karaangiza
vara[suonduranya
vara[vodong'anıra
vara[vodong'ana
vara[karaanga
vara[cheeriza
vara[karaga
vara[karagaanga
vara[deeka
vara[vega
vara[tya

In this verb form, the simple surface generalization is that all verbs are toneless. Why then would we say that there is a final tone here? The answer derives from two facts about this tense. First, positing a melodic tone at all explains why there is deletion of the lexical tone. Now we could just give up the goal of giving a representational account for these various tenses, and might just say that in this tense, tones are deleted from the verb, by reference to a ubiquitous morphological property. Apart from theoretical reasons to reject the morphological solution, there are facts indicating that this tone deletion is the result of a phonological rule.

The underlying mechanism, Tone Deletion (11), in independently justified throughout the melodic system. Second, deletion by an abstract tone (one not surface manifested as raised pitch) is found with the final melodic tone of toned short verb stems such as varivega 'they will shave', where floating $T_{\beta, F}$ triggers suppression of lexical tone. The same kind of abstractly-conditioned tone deletion exists in at least two other syntactic constructions, the towards-construction and the what-construction. In the former construction (37a), Iná- stands in the position of the nominal augment, and all tones in the noun are deleted. In (37b), kí follows the noun which loses all of its tones (and usually the augment). In both cases, we may assume additional of a floating tone after the noun, which causes deletion or suppression of tones in the noun.

a. ıbárási	'horse'
	'towards the horse'
ikí'fóóyó	'rabbit'
ınákıfooyo	'towards the rabbit'
ıkí! rímbóoto	'flea'
ınákırimbooto	'towards the flea'
b, barasi kí	'what horse?'
kıfooyo kí	'what rabbit?'
kırimbooto kí	'what flea?'

A modifier with tone can follow a noun which has lost its tones because of ma-, but spreading of tone into that noun is always blocked.

$$
\begin{array}{ll}
\text { Inázingoko ziné } & \text { '4 chickens-wards' } \tag{38}\\
\text { Inákıfooyo kíra } & \text { 'that rabbit-wards' } \\
\text { Inázing'oombe zivaga }{ }^{\circ} & \text { '3 cows-wards' } \\
\text { Inánguruve enéne } & \text { 'big pig-wards' }
\end{array}
$$

The mere fact of lexical tone deletion does not definitively diagnose what kind of tone triggers the rule, however (38), where spreading is blocked, shows that there is an associated final tone which is not realized with raised pitch $-\mathrm{T}_{\mathrm{L}}$. If the M 11 tone is $\mathrm{T}_{\mathrm{F}, \mathrm{L}}$, we predict that lexical tones in the verb are lost, and tones from the right do not spread into the verb, as is the case. The specification T_{F} reflects the fact that the final vowel blocks spreading, therefore we need the specified T_{L} to go to the final vowel.

varavariza dáave	'if they had not counted'
varakoona mááma	'if they had helped mother'
kurasimugukiza váno	'if we had revived these'
urasuovir-oó'físá	'if you had believed the officer'
areeya karúunu	'if he had swept now'
kuravoholla vaangá	'if we had untied how many?'

Compare blockage by the posited final $\mathrm{T}_{\mathrm{F}, \mathrm{L}}$ above with expected spreading into the verb with the segmentally homophonous future forms in (40).

$$
\begin{array}{ll}
\text { varávárízá dáave } & \text { 'they will not count' } \tag{40}\\
\text { varákó'! 'já mááma } & \text { 'they will help mother' } \\
\text { kurásí'mớgúkízá váno } & \text { 'we will revive these' } \\
\text { urásóv́vír-óófisá } & \text { 'you will believe the officer' } \\
\text { arééyá ká'rúvnú } & \text { 'he will sweep now' } \\
\text { korávó' hóllá vá'ángá } & \text { 'we will untie how many?' }
\end{array}
$$

At this point, we have covered all of the known single-tone melodic patterns of Logoori, at least in their basic manifestation, except for M9, which is found in the hesternal perfective.

$$
\begin{align*}
& \text { M9 toneless } \tag{41}\\
& \text { vaa[háánzúúkízí } \\
& \text { vaa[rákúórízí } \\
& \text { vaa[vézégérí } \\
& \text { vaa[gánágání } \\
& \text { vaa[rákúv́rí } \\
& \text { vaa[táándórí } \\
& \text { vaa[górízí } \\
& \text { vaa[bímí } \\
& \text { vaa[rájí } \\
& \text { vaa[shíi }
\end{align*}
$$

```
M9 toned
vaa[táángáázírí
vaa[káráángízí
vaa[sóv́ndórányí
vaa[vódóng'ání
vaa[káráánjí
vaa[chéérízí
vaa[kárájí
vaa[dééchí
vaa[véjí
vaa[tyíi
```

We observe that toned and toneless stems have tone throughout the stem, suggesting a final tone which spreads left. However, this tone must be different from the final tone of M2 first because that tone is
assigned to V2 in toneless stems, and second because M2 tone is not assigned in toned CV and CVCV stems because of the moraically-adjacent tone which blocks assignment of $\mathrm{T}_{\beta, \mathrm{F}}$, but the M 9 tone is assigned after lexical H. The (final) tone of M9, then, is distinct from that of M2, being assigned to the final syllable regardless of preceding tones.

Of those tones that may be assigned to the final syllable, T_{β} identifies tones which can associate to V 2 when no lexical H precedes, and combination with F is what triggers final association. Bare T_{F} has not been identified so far, but we would suspect the existence of such a tone by seeing a melody that does not link to V2, and instead always links to the final vowel, which is what we have in M9. The only problem with simply deeming the M9 tone to be bare T_{F} is that Final Linking would apparently not associate the melodic tone to /vaavéji T_{F}, since the target is preceded by an underlying toned vowel. In previous example of short-stem blockage of association, loss of lexical tone is via suppression - conversion to T_{L}, triggered by T_{β}. In this case, we posit complete deletion, which is triggered by $\mathrm{T}_{\mathrm{F}} . \mathrm{T}_{\beta}$ and $\mathrm{T}_{\beta, \mathrm{F}}$ trigger suppression (conversion to T_{L}), but T_{F} triggers absolute deletion. This explains why toned and toneless stems behave the same in M9 - they are the same, lexical tone is deleted - and we allow Leftward Spreading to the stem initial vowel. Therefore, we can posit that the tone for M 9 is T_{F}, and that bare T_{F} causes lexical deletion, not just suppression (conversion to T_{L}). ${ }^{9}$

2.5. Double-H patterns

Some melodic patterns have combinations of tones. The most transparent of these is the M7a pattern of the immediate imperative, which have a final tone and a second-syllable tone.

	M7a toneless
	ka[haanzươ'kízí
	ka[rakúvi'rízí
	ka[veezé'géré
	ka[ganá gánírí
	ka[ganá! gáné
	ka[rakơ'órí
	ka[taandúri
	ka[gurízi
	ka[bıumí
	ka[ragé
	ka[shí

```
M7a toned
ka[taangáázírí
ka[karáá!ngízí
ka[soundờrányí
ka[vodó!ng'ánírí
ka[vodó'ng'áné
ka[kará!ángé
ka[cheerízı
ka[karáge
ka[deeké
ka[vegé
ka[tyí
```

We see that the first tone is always on the second stem syllable (not vowel) except in CV roots where there is no second syllable, and there is a final H in all forms except trisyllables with a short penult. The obvious inference to draw from the data is that this pattern contains both T_{2} and $T_{\beta, F}$. In the case of relatively long stems such as kahaanzứ̛́kizí, both of the tones can be associated to the appropriate syllable (second-syllable and last) giving kahaanzứ̛́kizí, and the final tone spreads left to give the output. The difference between trisyllabic long-penult karakớór'́ and short-penult kataandúrr is already predicted by the preceding analysis, because of the moraic location of the first tone relative to the final tone. In karakơ'or'í the second tone can associate to the final vowel because the preceding

[^7]mora is not toned, whereas in kataandúrI the final vowel is on the mora right after the one which bears the first tone in the sequence. In the shortest stems kabirmí, karagé only the initial tone associates (to the second syllable), and in kashí, there is no second syllable therefore T_{2} cannot associate (therefore only T_{β} associates). There is a bit of a puzzle under this analysis that LS tends not to spread T_{2} to steminitial position, which might be evidence for an additional non-realized tone, a specified stem-initial non-raised tone $\mathrm{T}_{1, \mathrm{~L}}$. This pattern is selected by two related inflectional constructions, the immediate imperative and the object-imperative, an example of the latter being komoró'méré 'speak to us!', nzambá'káná 'refuse me!'. A morphological characteristic of these tenses is that they have no subject prefix, and select the final vowel/e/ except when the prefix domain has no vowel (as in nzambálkáná).

A different double-H pattern, M7b, is found in the 'explanatory recent past' with the tense prefix -aka-.

> M7b toneless
> vaaká[háá'nzúv́kízá
> vaaká[rá'kúórízá
> vaaká[véé'zégérá
> vaaká[gá'nágáná
> vaaká[rá'kươrá
> vaaká[táá ndớrá
> vaaká[gớrízá
> vaaká[bíI'má
> vaaká[rá!gá
> vaaká[shá

This pattern clearly combines the stem-initial tone $T_{[}$and final $T_{\beta, F}$.
A puzzle is posed by CVCV stems like vaakárá'gá, vaakávé'gá, in that the final H is moraically preceded by a melodic tone, which should block Final Linking analogous to kakaráge. In fact, blockage in kakaráge is only optional, kakarálgé is also possible (albeit most frequent), whereas blockage is obligatory in the various patterns which add $T_{\beta, F}$ alone. In other words, the blocking condition on Final Linking is connected to the nature of the preceding tone, where lexical tone always blocks but T_{2} only optionally blocks. Then, vaakárálgá is explained by fine-tuning blockage so that $\mathrm{T}_{[}$ does not block. There is a simple way to implement that generalization in the grammar, namely ruleordering. In order to block Final Linking, the preceding tone must be associated to the penultimate mora - as stated in the rule. If T_{1} is not linked at the stage when Final Linking applies, it does not block the rule.

As one can see in the final line of the derivation above, a bi-tonal short vowel is generated in [vaakavé'gá], distinct from the mono-tonal stem-initial vowel in [vaakará'gá]. Phonological T_{L} is only phonologically distinct from \varnothing, phonetically there is no difference between a toneless syllable and a syllable with T_{L}.

3. Further sub-patterns: The OP

There are yet other complications to the melodic system, which we will touch on but not presently give much analysis of. First, when an object prefix is present, there is a substantial change on the surface tone pattern - that is the topic of this section. Second, there is a phrasal interaction (treated extensively in the following section) between a verb and the next word which further supports the abstract phonological approach taken here. Some verbal tones delete when followed by a modifier and some do not; and furthermore, modifiers provide additional evidence for distinguishing absolutely-deleted melodic tones from suppressed tones.

Many of the pattern distinctions are eliminated when an object prefix combines with other melodic tones. The overall tendency is that toned stems have tone on the stem-initial syllable, and toneless stems have tone on the second stem vowel. Another tendency is that both lexical tone classes have an overall $\mathrm{H}^{\prime} \mathrm{H}^{*}$ pattern, when the stem is trisyllabic or longer. This is summarized in (45).

m1	kokétema
	kukíkaraanga
m 2	variketéma
	varikıkáraanga~varikıká'ráángá
m3	nı vaketéme
	nı vakıkáraangı
m4	vaakétema \sim (vaaké'téma)
	(vaakédeeka)~vaakédeeka
m6	vtaketéma
	utakıkáraanga
m7a	kaketéme
	kakıká'ráángé
m7b	vaakaké'témá
	vaakakí'káráángá
m8	vááketema~(vááketéma)
	váákıkaraanga~(váákıkáraanga)
m9	vaaketémi~vaaketé'mí
	vaakıkáraanji~vaakıká'ráánjí
m10	vaketémi
	vakıkáraanji

```
```

kukívariza
kuvárakuora
varikıgórá
varikırakúúra~varikırá'kúúrá
nı vakıgúrı~nı vakıgúrí
nı vakırákuorı~vakırákúurı
vaakí!górá
vaakí'chóóra
utakıgórá
utakırakúv́ra
kakıgórí
kakrrá'kóơrí
vaakakílgórá
vaakakÍ'rákươrá
váákıgura~(váákıgúra)
váákırakơra ~ (váákırákoora)
vaakıgúrí~vaakıgớrí
vaakırákúóri~vaakırá'kúúrí
vakıgórí
vaakırákúúri

```

An OP in the imperative is morphologically barred, hence the gap for M5. In the case of M1, there is no stem melodic tone, and the surface OP tone may reflect plain deletion of tone immediately after
tone where /kv-kí-káraanga/ \(\rightarrow\) [kvkíkaraanga]. Since there is substantial neutralization in toneless verbs to a second-vowel pattern, the analysis would start from the premise that there is a broad change of the melodic tone to \(T_{\beta}\) after an OP tone, also to \(\mathrm{T}_{1}\) in the combination of OP tone plus a melodic stem tone. The toned / toneless neutralization is asymmetric in that toned roots rarely have the same pattern as in OPless forms, but toneless verbs with a second-vowel tone have "same as no OP" as an option, indeed the only option for shorter stems. There are substantial questions of optionality that require further research before proposing an analysis, the point of this section is simply to point to another large-scale complexity of the language, which stands in need of a simple analysis.

\section*{4. Further sub-patterns: Phrasal sandhi}

Another domain providing evidence for the purely-phonological approach to tonal melodies is the behavior of verb+modifier sequences. The two phenomena relevant here are deletion of tone in the verb, and deletion of tone at the beginning of the modifier (alternatively, assignment of H in a complementary environment). In the case of verb tone deletion, only melodic tones delete, but not all melodic tones delete. Melody deletion subclassifies melodic tones just as the citation-pattern rules have subclassified those tones. As for post-verbal tone change, the post-verbal presence vs. absence of initial tone is condition by both the tone classification of the target word itself, and the presence versus absence of melodic tones in the verb, bearing in mind that some melodic tones remain phonologically present but phonetically suppressed - they are \(\mathrm{T}_{\mathrm{L}}\) - while other melodic tones are entirely eliminated.

\subsection*{4.1. Ordinary modifiers: M1}

The analysis of phrasal sandhi starts with a consideration of M1 verb forms followed by various ordinary postverbal words. This gives us a baseline for understanding \(\mathrm{V}+\mathrm{X}\) interactions. The first behavioral division required is, descriptively, between "ordinary" words versus "special" words. In ordinary words, the only significant tonal interaction between verbs and following modifier is application of LS. With that matter squared away, we turn to what happens to the inflectional melodies followed by tonally-ordinary words. Finally, we contemplate the properties of "special" words, and how that interacts with the various melodies.

Various nouns, adverbs and demonstratives are toneless, causing no change in the verb's tone (though as in the case of varaty-éeng'oombe, vowel fusion can result in a long falling tone coming from \(/ \mathrm{V} \# \mathrm{~V} /\) ). The tone of the verb in \(\mathrm{V}+\mathrm{X}\) is the same as the tone of the citation form of the verb, factoring in general phonological adjustments.
\[
\begin{align*}
& \text { varagura }  \tag{46}\\
& \text { varáréga } \\
& \text { arákísha } \\
& \text { kovóha } \\
& \text { varávódong'ana } \\
& \text { varátyá } \\
& \text { yaakúgóóta }
\end{align*}
\]
varagur-eeng'oombe varárég-eeng'oombe arákísha vwaango
kovóha vwaango
varávódong'ana vuza
varávódong'ana llara
varaty-éeng'oombe
yaakúgúv́ta yava
'they will buy a cow'
'they will defeat a cow'
'he will grind it quickly'
'to tie quickly'
'they will go around only'
'they will go around once'
'they will fear the cow'
'he defeated these'

LS applies when the following modifier has a tone. If the verb is toneless, the modifier's tone generally spreads thoughout the verb, usually but not always stopping before the word-initial syllable.
(47)
\begin{tabular}{ll} 
vararakơra & varárákúórr-áváana \\
aragavoranya & árágávúrányá gáráha \\
kurarıma & kurárímá vớháhı \\
ndaakorora & ndaakórórá éditoni \\
korikagwı & kuríkágwí vódínyú
\end{tabular}
'they will release the children'
'he will divide quickly'
'we will plow well'
'I saw Editon'
'we will fall hard'

When a tone is present in the verb (either a root tone, that of an OP, or the prefix tone in completivefocused forms), modifier tone spreads from the post-verbal word up to the verb's tone, the two being separated by a downstep.
```

varikadééke
varikadééké vưráhı
ndáaakageenda
ndá'ákágééndá mkíváánda
váríkánágori
váríkáná!górí vúdínyú
varávódong'ana
varávó!dóng'áná gáráha
varatyá
varatyá !gáráha
yaakúúnzita
yaakươ!nzítá n-Írigına
kuváta
kvvá'tá híídáára
waakúkékora
waakúké'kórá n-İ'zísóni

```
'they will cook'
'they will cook well'
'I have walked'
'I have walked in the valley'
'they will run'
'they will run hard'
'they will go around'
'they will go around slowly'
'they will fear'
'they will fear slowly'
'he killed me'
'he killed me with a rock'
'to bury them'
'to bury them by the village'
'you did it'
'you did it with shame'

\subsection*{4.2. Ordinary modifiers: other melodies}

Looking first at M3 in the crastinal future, a following modifier has no effect on the M3 melody. The second syllable has tone as expected, also the third syllable does if the second syllable is short, as predicted by the analysis above. If the following word is vowel initial (has an augment), \(\mathrm{V}+\mathrm{V}\) fusion results in the verb's final tone being reassigned to the augment (na kodéék-ínama). Penult fall in prepausal position predictably becomes level (na kvkáráange, na kvkárááng-IInama) when followed by other words.
```

nı varyí ' m 'gáámba
na vavegé marova
na viit-ámagu
na kodééké vwaangu
n-aachéérízí! sáana
na kukúúmbéére yava
na vakáráá ngírí mááma
na vásáámbúrúgányı yava
na kvkárááng-ınama
ma vakáráángır-omkúư'nzákárí

```
'they will eat tomorrow'
'they will shave Marova'
'they will kill carpenter beetles'
'we will cook quickly'
'he will greet lots'
'we will hug these'
'they will fry for mother'
'they will dismantle these ones'
'we will fry meat'
'they will fry for the widow'

The M4 remote past tone is also unaffected by a following ordinary modifier.

\author{
yááróra uyu \\ vaavúruga yivwo \\ waatíímbulla yıkı \\ yáávódong'ana yiki \\ yáágávorana llara \\ ndáásáámburugana gáráha \\ váásha má!dóvma \\ wááréét-İríjáambi \\ kwááchéé'ríz-íchóógo \\ ndáágúv̛̀ tá gáráha \\ wáámó rómá gáráha
}
'he saw this one'
'they mixed porridge that one'
'you unsewed this one'
'he went around this one'
'he divided once'
'I dismantled slowly'
'they ground maize'
'you brought a mat'
'we greeted Choogo'
'I defeated slowly'
'you spoke slowly'
The stative, M8, also only shows the effect of LS spreading tone into the verb.
yáámana marova
yáá yáánz-ímbwá !yáá
yáásoor-Ím
ndáá'máná máróvá dáave
ndáá'mén-íchá'nzéywé 'mbá
'he knows Marova'
'he likes my dog'
'he rejects my dog'
'I don't know Marova'
'I don't live in Chanzeywe'

\subsection*{4.3. Tone Erasure}

Things are different with final melodic tones, starting with M2. Sometimes a verb loses its tone before another word. Under the M2 pattern, toneless verbs have tone on the second stem mora and toned verbs have final tone, unless the stem is shorter than two moras. The following data from the indefinite future (M2) show that all such verbs become toneless when something follows. The crucial examples are toneless verbs (where the tone would be on V2) or longer toned verbs, but not CV or CVCV toned stems which do not realize the melodic tone anyway. In the examples below, the following word is toneless, therefore the utterance is toneless.
(52) Toned verbs \((3 \mu+)\)
arikoona korima 'he will help to plow'
arideek-ınama
arivohooll-Izing'oombe
arisinıkiza vwaangu
aricheeriza marova
aricheeriza vwaango
'he will cook meat'
'he will untie the cows'
'he will annoy quickly'
'he will greet Marova'
'he will greet quickly'

\section*{Toneless verbs}
kurisha vwaangu
varisha yıvo
uriror-evogono
varirakuor-Izing'oombe
aridvya marova
arihaandiika amarago
'we will grind quickly'
'they will grind these'
'they will see into the bedroom'
'they will release the cows'
'he will hit Marova'
'they will write laws'
Examples where the following word contains a tone are seen below, with tone spreading into the verb.

Toned verbs
varivohóóllá móno llara
arívódóng'án-íkíndi
arívóhóóllá gáráha
aricheerizá vứáhı
varivogíillizáná ná gú úgá
arisíníkízá vájálwo
Toneless verbs
varígwá háánáánguruga
arimáná mááma
ndígééndá mkíváánda
kurígúríz-ícháá'yírú
várígánágáná vứráhı
varigánágányá ávárógoori
'they will untie in here once'
'he will go around another'
'he will untie slowly'
'he will greet well'
'they will agree with grandfather'
'he will annoy the Luos'
'they will fall by the ugali pot'
'he will know mother'
'I will walk in the valley'
'we will sell the pasture'
'they will think well'
'they will make the Logooris think'

Similarly, verbs in the habitual / present lose their melodic tone, and tone can spread from the following word into the detoned verb.

'he wants Marova'
'he wants a slap'
'we want a Logoori to plow the field'
'I walk to school'
'we don't drink tea'
'He talks like grandchild'
'you don't work in Vihiga'
'I don't walk to school'
'we don't speak Tiriki'
'we drink tea'
'he walks to school'
The perstitive likewise loses its tone.
(55) kokeheenzá chíífu
akíbí́má ébéénzeni
kokınagura vwaango
kúkívárízá gáráha
kukivariza vwaangu
kukibadura vururu
kukitaandora vuroru
kukirakuor-Izing'oombe
ákíchéérizá vơráhı
'we are still watching the chief'
'he is still measuring the basin'
'we are still running quickly'
'we are still counting slowly'
'we are still counting quickly'
'we are still whipping fiercely'
'we are still tearing fiercely'
'we are still releasing the cows'
'he is still greeting well'

Not all following words trigger deletion of the M2 tone: certain sentence-final adverbs do not. Toneless verbs retain their M2 tone before dáave, mbá 'not' and sáana 'much, a lot'. Longer toned verbs retain their final melodic tone before these modifiers as well, though CV and CVCV toned stems would have no tone even in their citation form.

Toned verbs
varinwa dáave
arya mbá
arivegá sáana
urivega dáave
arikooná! sáana
arivohóóllá! dáave
arikooná! dáave
aricheerizá \({ }^{\prime} \mathrm{mbá}\)

\section*{Toneless verbs}
kurishá' dáave varigurá 'sáana urigứrá 'dáave aribíi'má dáave variganá!gáná dáave
'they will not drink'
'he will not eat'
'he will shave a lot' 'you will not shave'
'he will help a lot'
'he will not untie'
'he will not help'
'he will not greet'
'we will not grind'
'they will buy very much'
'you will not buy'
'he will not measure'
'they will not think'
From examples in (54) such as komóróm-úrứdiríjí dáave where dáave is present after another modifier, we conclude that dáave itself does not block tone erasure, it simply fails to condition it by itself. The specific analysis of that exception relates to the domain of the rule, which is that stem tone erasure applies within the VP, whereas these adverb attatch at a level higher than the VP.

Melody deletion also does not take place in certain clausal forms of verbs with M2. As we see in (57) relative clause forms of the indefinite future do not lose their melodic tones before a modifier.
\(H\) verbs
aváána varikooná kurima
rwá varikooná! gáráha
rwá varideek-íinama
aváána varivohóóllá vuza
rwá varivohóóll-ízing'oombe
vwahá varivohóóllá llara

\section*{\(L\) verbs}
vwah-árigwá vwaangu
avásóóréri varishá 'há ófisa
rwa varimígá marova
vwah-átarigwá vwaango
avasóóréri varigúrá vuza
aváána varibíma gáráha
oríkuchóó'rá vứáhi
umúúnd-arigánágana yavo
rwá varirakứ̛́r-Izing'oombe
'the children who will help to plow'
'when they will help slowly' 'when they will cook meat' 'the children who will only untie' 'when they will untie the cows' 'who will untie once'
'who will fall quickly'
'the boys who will grind by the officer'
'when they will strangle Marova'
'who will not fall quickly'
'the boys who will only buy'
'the children who will measure slowly'
'the one who will draw us well' 'the person who will think of those' 'when they will release the cows'

These complications will be considered in detail (months) later.
The imperative, which we have analyzed as a special case of M2 where the melodic tone is deleted when it is both stem- and word-initial, also undergoes melody deletion. The crucial cases
showing this are toned verbs with stems longer than two moras which have a final tone in citation forms. As we see below, they lose their tone before a (toneless) modifier.
\begin{tabular}{ll} 
deek-innama & 'cook the meat!' \\
koona yavo & 'help those!' \\
karaga marova & 'judge Marova!' \\
karaga yava & 'judge those ones!' \\
vohoolla vwaangu & 'untie quickly!' \\
karaang-Inama & 'fry meat!' \\
vodong'ana yava & 'go around these!'
\end{tabular}

Melody-loss plus LS is also found in toned verbs.
\begin{tabular}{ll} 
cheeriz-aaḿ! gúní & \begin{tabular}{l} 
'greet Amguni!' \\
fuungá gáráha
\end{tabular} \\
vegá gáráha & 'close slowly!' \\
karágá vóráhı & 'judge slowly!' \\
karáángá mávớyu & 'fry eggs!' \\
vohóóll-ízíílmbwá & 'untie the dogs!'
\end{tabular}

Toneless stems and short toned stems expectedly have no tone, insofar as they are toneless even in citation forms.
rya vwaangu
vega marova
sha vwaango
rıma vwaango
choora vwaango
gavoranyıra yavo
rakuora marova
koroga yava
'eat quickly!'
'shave Marova!'
'grind quickly!'
'plow quickly!'
'draw quickly!'
'dole out for those!'
'release Marova!'
'stir those ones!'

Another tense evincing melody deletion is the M9 hesternal perfective, which loses its final melodic tone before a modifier.
kwaar-ınлama
kwaaveji marova
zyaayayi ha kıguotı
kwaadeechi vwaangu
waatyíí míhádya
kwaakor-Ígáasi
kwaakaraj-úmwáana
kwaarakouri ómwáana
kwaacheerízí chóógo
vaakwéésí gáráha
kwaang'óód-ívítábu
waamorómí gáráha
ndaasaambórứgání gáráha
'we ate meat'
'we shaved marova'
'they grazed at the field'
'we cooked quickly'
'you feared Mihadya'
'we did the job'
'we judged the child'
'we released the child'
'we greeted Choogo'
'they pulled slowly'
'we wrote books'
'you spoke slowly'
'I dismantled slowly'

A trace of the underlying melodic tone remains in these data, nevertheless. The lexical distinction between toned and toneless is fully eliminated. Lexically toned verbs are toneless before a modifier just as lexically toneless verbs are. This is in contrast to the M7b explanatory past below, where there is similar citation-form neutralization, but phrase-medially the underlying lexical distinction reemerges. When the M9 tone deletes, this does not cause re-emergence of the lexical tone.

The M11 counterfactual has a uniform final tone, but it is one not realized as pitch raising: this melody is \(\mathrm{T}_{\beta, \mathrm{L}}\). As seen previously, \(\mathrm{T}_{\beta, \mathrm{L}}\) triggers deletion of lexical tones in the stem, and blocks spreading of a following tone, even allowing otherwise unattested rising tones under syllable-merger (arayaanz-eéditoni). From that fact, we surmise that this final tone does not delete phrase-medially.
```

varavariza mááma 'if they had counted mother'
varakoona mááma 'if they had helped mother'
kurarya sáana
kvrasimugukiza váno
kuraveereriza váá'sháárá
arayaanz-eéditoni
'if we had eaten much'
'if we had revived these'
'if we had mourned the cousins'
'if he had loved Editon'

```

Even though the M10 hodiernal perfective pattern is very similar to the M2 pattern, it is distinct phrasally, in that the melodic tone is not deleted, though because lexically toned verbs are toneless in citation forms, this can only be clearly seen with lexically toneless verbs.
```

ugwíí vwaango
kogoní! vớráhi
kugullíi marova
vachóóri gáráha
agúrízi yaga
nduvúri amagáánda
kvtáándori yaga
vagávúranyi garáha
mburơ'gányí Úvúchíma
ndakướrí ádébi

```
'you fell quickly'
'we slept well'
'we bought for Marova'
'they drew slowly'
'he sold those ones'
'we tore up those ones'
'they doled out slowly'
'I stirred up ugali'
'I released Adebi’

The immediate imperative pattern M7a also has a final tone, which does not delete in the presence of a modifier. The general pattern for M7a is that the final tone is not assigned prepausally after a short penitial (toned) syllable because it is precede by a \(\sigma 2\) tone, thus any tone on the following vowel of such stems must derive from LS from a tone in the following word.
kam'hoomóll-Ikıkurori
kasưvír r-áváándi
kavúrúg-ovosera
kavaríz-Izing'oombe
kaseembélle llara
kaguríz-ıviindu
'now massage the tailbone for him!'
'now believe others!'
'now mix porridge!'
'now count the cows!'
'now weed once!'
'now sell the things!'

Otherwise, the final vowel has a tone in this tense, and as the following examples show, that tone is retained before a modifier.
kazyí vwaangu
kary-á váándı
karagé 'mááma
karogé llara
kadeek-ÍInama
kakará'áng-íInama
kavodóng'ané yava
karındí'íll-írikướ'kúvnu
kavodóng'an-áava
kavohóoll-ízing'oombe
'now go quickly!'
'now eat others!'
'now promise mother!'
'now bewitch once!'
'now cook meat!'
'now fry meat!'
'now go around these!'
'now wait on the ant!'
'now go around those!'
'now untie the cows!'

In contrast, the explanatory past M7b, which also has a citation bi-tonal melody with final tone, substantially changes its pattern when a modifier follows. When the stem and following word are toneless, the combination is toneless: the melodic tones are missing.
yaakazya llara
yaakagwa vwaangu
kwaakagur-Izing'oombe
vaakasema marova
yaakagur-iviindu
yaakaguriz-Izing'oombe
yaakaminag-ovosera
vaakazaazaam-innyama
vaakahaangarizana vwaango
'he went once'
'he fell quickly'
'we bought cows'
'they insulted Marova'
'he bought things'
'he sold cows'
'he stirred porridge'
'they tasted meat'
'they argued quickly'

If the following word has a tone, it spreads into the verb.

\author{
kwaakásh-óóvóró \\ yaakárórá óm'kó \\ kwaakárór-úvớmáá'nání \\ ndaakágórá vííndi \\ ndaakásóná édıtoni \\ waakágérízá kódéeka \\ kwaakárákúv̛́rá váándı \\ ndaakávéérérízá káándí \\ ndáákágééndágáá mkíváánda
}
'we ground millet'
'he saw brother in law'
'we saw extreme poverty'
'I bought others'
'I pointed at Editon'
'you tried to cook'
'we released others'
'I mourned again'
'I was walking in the valley'

But toned verbs only lose the melodic tone, retaining their lexical tone.
vaakat-ơ'úndı
kwaakanw-óvosera
vaakar-ínnama
kwaakákér-izing'oombe
vaakáté!g-ízíngókó
ndaakákár-ıınama
waakáréét-Izing'oombe
yaakakámat-vmugoye
yaakávó'dóng'án-Í'mbúrú
'they buried another'
'we drank porridge'
'they ate meat'
'we milked cows'
'they trapped chickens'
'I sliced meat'
'you brought cows'
'he caught a rope'
'he went around the monitor lizard'

In phrase-medial position tone pattern M7b is indistinguishable from M1, showing that this alternation is not melody-deletion, this is melody non-selection. There is no trace of melodic behavior phrase medially, in contrast to phrasal forms of M2 which lose the melodic tone while still showing the effect of melodic tone in the forms of lexical tone deletion. The issue for M7b is then purely a matter of morphosyntactic distribution.

In summary, there are a variety of effects on the tone of medial verbs whose behaviors are made more sensible given the understanding that not all phonetic H or L tones have the same phonological analyses. First, we see that final tones may delete phrase medially, but not all final tones delete. Those of M2, M5 and M9 are not realized, and yet the melodic tones still have their effect in causing deletion of lexical tones. M7a and M9 tones are fully realized; M7c tone is by hypothesis not even affixed in a non-final verb. Finally M11 \(\mathrm{T}_{\beta, \mathrm{L}}\), which is a fully abstract tone identifiable only via its effect on surrounding tones, is not changed phrase-medially.
\begin{tabular}{ll} 
I & \begin{tabular}{l} 
behavior \\
no melody, just LS \\
melody only in citation \\
form, entire pattern \\
radically different
\end{tabular} \\
II \\
III & \begin{tabular}{l} 
medially vs. finally \\
melodic tone deleted, \\
internal effect of melody \\
persists
\end{tabular} \\
IV & no deletion of melody
\end{tabular}

\section*{which patterns}

M1 (-aaku- past etc)
M7b (explanatory -aaka-)

M2 (subset: -ri- indefinite \(\quad T_{\beta, F}, T_{F}\)
but not relative forms), M5
(imperative), M9 (hest.
perf)
M11 (counterfactual), M10 \(\mathrm{T}_{\mathrm{F}, \mathrm{L}}, \mathrm{T}_{\beta}, \mathrm{T}_{2}+\mathrm{T}_{\mathrm{F}}, \mathrm{T}_{2}\), (hod. perf), M7a \(\mathrm{T}_{1}, \mathrm{~T}_{\text {[ }}\)
(immediate imperative),
M3 (subjunctive), M4
(remote), M8 (stative)

Given this distribution, the next step in analysis is to posit a rule targetting the appropriate melodic tone. From this table we see that it is \(\mathrm{T}_{\mathrm{F}}\), with or without the feature \(\beta\) which figures into V2 association, suggesting a rule along the lines of (70)
(70) \(\quad \mathrm{T}_{\mathrm{F}} \rightarrow \emptyset\)
\# V

Important technical details still need to be worked out. One is the expression of the VP requirement between the deleted melodic tone and the following trigger - how is the syntactic-domain limit implemented in the grammar? A second is the fact that relative clause forms also do not undergo the rule. Third, why is the final specified-L final tone also not deleted: does the rule also say "and not L"? This questions will be taken up later.

\subsection*{4.4. Tonally Special Modifiers}

Given this background on melody modification before ordinary modifiers, we now turn to the tonallyspecial words, which undergo left-edge tonal modifications as a function of the preceding word's tone
(thus melody deletion is obviously relevant). There are three subtypes of tonally-special modifiers: CV particles, 'guuga-words' (similar to guugá 'grandfather'), and non-prefixing demonstratives (vára 'those yonder', váno 'these' with an initial class morpheme, as opposed to ones with a phonologically and semantically empty vowel such as in \(\boldsymbol{I k I}\) 'this', \(\boldsymbol{I c h o}\) 'that', aga 'these'). Their behavior is summarized below with an M1 form of a toneless verb, a CV toned verb, and a longer toned verb.
\begin{tabular}{ll} 
ndaakórórá gú'úgá & 'I saw grandfather' \\
\begin{tabular}{l} 
ndaakóróá ku \\
ndaakórórá vara
\end{tabular} & 'I saw a bit' \\
'I saw those'
\end{tabular}

The phrasal alternation centers around presence or absence of initial tone. Citation guugá and vára present an apparently conflicting view, that demonstratives have an initial tone but guugá does not. The simplest analysis emerges from assuming that these modifiers all have a tone which is missing in some context (the tone is not inserted in the complementary context). That tone is a floating tone, which may remain floating or be deleted under certain conditions, and the representational fact identifying these modifiers as different from tonally ordinary words is that very floating tone.

Other facts support the conclusion that /gúugá/ has two underlying tones. In general the evidence indicates that all of these these modifiers have a tone subject to contextual deletion (or nonassociation), rather than the tone being a part of the verb which is then assigned to certain following words. Evidence for underlying initial tone in the case of/gúugá/ comes from analysis of nominal lexical tone. The extant noun tone patterns are to have no tone, initial tone or second-syllable tone, and the two double-tone patterns pre-stem and penult, or pre-stem and final.
(72) toneless
\begin{tabular}{|c|c|c|}
\hline umogera 'river' & iri-davaangiru & 'badly-made pot' \\
\hline ikıharaato 'famine' & eneengero & 'beer pot' \\
\hline \multicolumn{3}{|l|}{toned (default location)} \\
\hline umókúru 'initiate' & amágáraba & 'bean leaves' \\
\hline eké-kóómoori 'plant sp.' & ıví-táraazi & 'shelves' \\
\hline \multicolumn{3}{|l|}{second syllable} \\
\hline umféréji 'water tap' & ísúgúdi & 'conga drum' \\
\hline nasáaye 'God' & amabárábaande & 'loquats' \\
\hline \multicolumn{3}{|l|}{two tones, second one final} \\
\hline é'n-gókó 'chicken' & ikí'-fwóóyó & 'rabbit' \\
\hline oro-séé'ng'ééngé 'barbed wire' & eké-dó'vóngóryó & 'pool of water' \\
\hline \multicolumn{3}{|l|}{two tones, second one penultimate} \\
\hline mri'-bwóoni 'potato' & Ín-dớgónyi & 'ant sp.' \\
\hline eké-séégéra 'eye swelling' & rri-dá ráamu & 'drum' \\
\hline
\end{tabular}

Nouns like guugá (likewise koozá 'uncle' and baabá 'father') appear anomalous in having just a final tone, at least when they do not have a plural class prefix, but they are not truly anomalous since there are in the bitonal, final tone class. We directly see the first tone tone in citation forms in the plurals vááguugá, váákoozá and váábaabá. Nouns like guugá are morphologically special compared to \(I k i^{\prime}-\) fwóóyó in having no class prefix or augment in the singular, which gives rise to a unique morphophonological structure, a would-be word-initial stem with initial tone, something which only occurs on the surface under CV+V́ contraction, a syntactically-determined phrasal tone proclitic, or the present alternation. We conclude that the underlying stem of 'grandfather' is /gúugá/, though more precisely the first tone is not underlyingly associated, it associates conditionally. \({ }^{10}\)

These would-be initial alternating tones are at least temporarily identified here with the property S , which furthermore is morphosyntactically predictable. The connection to morphosyntax is visible through a common word-formation fact of this word class, regarding the augment and the distinction between primary vs. secondary agreement forms. The guuga type of modifiers, which are nominals, divide into three subsets: the aforementioned CVVCV nouns which have no class prefix or augment; numerals with no augment but secondary class-agreement (-virI '2', -vaga '3', -ne '4', -taano '5'); trisyllabic+ non-agreeing (Swahili-derived) modifiers such as sarasiini ‘30', tayáari 'ready’, kabisa 'totally' which have no prefixes at all. In light of the fact that the plural prefix of vááguugá is \(v a a\) and not \(v a\) which is the normal cl. 2 prefix, we can relegate \(v a a\) - to the subcategory of non-primary class prefixes.

CV words are almost entirely restricted to the alternating CV particles to be discussed here. The exceptions are \(m b a ́, d a^{o}\) 'not' which are tonally invariant, but also sentence-final and outside the syntactic domain (VP) where the tonal rule regarding particles can apply. Furthermore, \(d \dot{a}^{o}\) is the truncation of dáave 'not'. The only toneless CV word is \(z a\), which is an optional truncation of voza 'only'. The particles have no citation form, and they only appear after a verb (within the VP).

The alternating demonstratives are formed with a secondary agreement morpheme marking class followed by \(-n v \sim-n o\) in proximal demonstratives and \(-r a\) in distal demonstratives. Samples of these demonstratives are in (73).
\begin{tabular}{lllll} 
remote distal & further & & & cl. \\
vára & váno & yava & yavo & 2 \\
góra & gúno & yıgo & yıgwo & 3 \\
jíra & jínu & yiji & yijo & 4 \\
ríra & rínu & yiri & yıryo & 5 \\
gára & gáno & yaga & yago & 6 \\
kíra & kínu & yıki & yıcho & 7 \\
víra & vínu & yivi & yivyo & 8 \\
yíra & yíń & yyyi & yeyo & 9 \\
zíra & zínu & yizi & yizyo & 10
\end{tabular}

\subsection*{4.4.1. CV PARTICLES}

The sandhi behavior of CV particles is relatively simple. As seen above in (71) with the M1 pattern, the particle has a tone which spread to the left, except if the preceding verb has a final tone (therefore the particle loses its tone), or the verb is toneless (the tone shifts from the particle to the end of the

\footnotetext{
\({ }^{10}\) The final tone could be associated, or it could be \(\mathrm{T}_{\mathrm{F}}\) which links to the final vowel by rule.
}
verb). In (74), the verb has a tone, lexical in (a), that of an OP before a toned root in (b), or an OP before a toneless root in (c).
a. varávó'há kí
kwaakódéé ká kú
kurávé'gá rí
b. varaké'témá gú
arágá'nwá rí
kuravi'káráángá rí
c. árákí'shá rí
arakó! sémá gó
kurakó'sứ̛́virrá gú
'they will tie what?'
'we cooked a bit'
'we will shave when'
'they will indeed chop it'
'he will drink it when'
'we will fry then when'
'he will grind it when?'
'he will indeed insult us'
'we will indeed believe you'

There are three complications affecting particles which obscure their behavior. One is that when a prepausal tone spreads to preceding syllables, it frequently splits into a final \(H^{\prime} H\) sequence, thus we also find (75).
```

varávó'há 'kí
arávé'gá 'rí
varávó! dóng'áná 'kí
aravá'végá !hó
várákÍ'shá 'rí
uragơ'rímá 'kú

```
'they will tie what?'
'he will shave when'
'they will go around what'
'he will shave them by it'
'they will grind it when?'
'you will plow it a bit'

Since tone-splitting only applies prepausally, a toneless modifier after the particle removes that complication, in which case we see tone just on the particle, which spreads to preceding vowels without intervening downstep.
```

urákướ'mbéérá gú vuza
varáká'rágá hó llara
varáká! rágá kí vwaango
arakư'chéérízírá kú Marova
ndágúú'tá kú voza
oráká'ráángá kú llara
kwaakútướngá ndí marova
urárá'sá ndí llara
kurávé'gá rí vuza
'you will certainly only hug,
'they will judge there once'
'they will judge what quickly'
'he will greet for us a bit Marova'
'I will only defeat a bit'
'you will fry a bit once'
'we paid Marova how’
'you will throw that way once'
'we will only shave when'

```

This pre-pausal tone splitting is a form of phonological noise which obscures the analysis.
If the verbs ends in a tone (thus is a CV stem, in M1), the particle may lose its tone.
aratyá ki
yaakúryá ho
voráchá ri
vaakúnwá gu
varikánwí ri
ndaakúnwá kı
'he will fear what'
'he has eaten there'
'it will dawn when?'
'they have indeed drunk'
'they will drink when'
'I drank what'

Alternatively, the particle can retain its tone in which case downstep results from phrasal contenation of tones.
\begin{tabular}{|c|c|}
\hline aránwá 'hó & 'he will drink by it' \\
\hline araryá ! m & 'he will eat in' \\
\hline arátyá 'kí & 'he will fear what' \\
\hline kuránwá 'kú & 'we will drink a bit' \\
\hline uránwá 'hó & 'you will drink by it' \\
\hline vaakúnwá 'kú & 'they drank a bit' \\
\hline voráchá 'rí & 'it will dawn when' \\
\hline waakúnwá! hó & 'you drank by it' \\
\hline
\end{tabular}

The two patterns in (77) and (78) indicate that the rule deleting particle tone immediately after a tone is optional. In the M1 pattern, this option only arises with monosyllabic toned stems.

There is an infrequent option that a tone, even a non-prepausal one, optionally shifts to a preceding toned verb, but only if there is at least one toneless syllable preceding the final.
\begin{tabular}{|c|c|}
\hline arikáchí'ríng'áné go vwaango arikáchí'ríng'áné gú vwaango & 'he will certainly be quiet' \\
\hline ndikaché'révé ku kusooma & 'I will be a bit late to study' \\
\hline ndikaché'révé kú kusooma & \\
\hline varábá dơrá kı vwaangu & 'they will whip what quickly' \\
\hline varábá! dơrá kí vwaango & \\
\hline kwáá'sứ̛vírí ri mugaambi & 'we have now believed the preacher when' \\
\hline kwáá'sứ̛vírí ri mugaambi & \\
\hline kurikávéga hó vuza & 'we will only shave by it' \\
\hline *kurikávé'gá ho vuza & \\
\hline aradéé ká kí llara & 'he will cook what once?' \\
\hline *aradééká kı llara & \\
\hline
\end{tabular}

The alternation of greatest interest for understanding tonal melodies is leftward shift of tone from a particle. If the preceding verb is toneless, the tone shifts leftward from the particle to the end of the verb.
\begin{tabular}{|c|c|}
\hline kurábírmá ki & 'we will measure what' \\
\hline varágávúrányá ndı & 'they will divide this way' \\
\hline varikáshé ndi & 'they will grind how' \\
\hline yaakúvárízá ho & 'he has counted there' \\
\hline vaakóséémbéllá kı & 'they have weeded what' \\
\hline yaakógótá hó za & 'he only got lost at it \\
\hline yaakúvárízá ho za & 'he has only counted there' \\
\hline kurárímá kı vuza & 'we will only plow what?' \\
\hline varárógá ku Marova & 'they will bewitch a bit Marova' \\
\hline arázyá ndı vwaango & 'he will go how quickly' \\
\hline varágánágáná ri & 'they will think when?' \\
\hline uragúrízá h-ıviindu & 'you will sell things by it' \\
\hline arikárákươrízí kı kasaandi & 'he will make Kasaandi release what' \\
\hline ndikázáázáámé kw-ıInama & 'I will taste the meat a bit' \\
\hline
\end{tabular}

An important exception to the toneless generalization (w.r.t. obligatory shift) is that completive-focus forms have H on the subject prefix syllable, but this H does not block particle tone shift.
\[
\begin{array}{ll}
\text { wáakavárízá ho kadív-avaandv } & \text { 'you have now counted even people by it' }  \tag{81}\\
\text { váakakórórá ri ha mugizi } & \text { 'they have now coughed at the homestead when' } \\
\text { yáákarakúv́rá gu marova } & \text { 'he has now certainly released Marova' } \\
\text { yáarásí kw-amagina } & \text { 'he has now thrown stones a bit' } \\
\text { wáagávớrí gw-IInama } & \text { 'you have now certainly divided meat' } \\
\text { yáagwíi ri mu chiito } & \text { 'he has now fallen when in the market' }
\end{array}
\]

From this, we conclude that the toneless restriction is in terms of stem tones, not word tones.
Turning to predictions for other patterns involving melodic tone affixes, we do not generally expect tone to shift from a particle to a preceding toneless verb, because by nature tenses with tone melody inflection are not toneless. This is the case with M3 verb forms, which always have a melodic tone. That tone can appear on the first or second stem vowel which can be word-final, as well as on the third vowel when the penult is short, otherwise the stem has a non-final tone. This predicts the possibility of deletion of the particle's tone after CV, \(\mathrm{CV}(\mathrm{V}) \mathrm{CV}\) and \(\mathrm{CV}(\mathrm{V}) \mathrm{CVCV}\) stems, but not elsewhere - this prediction is correct.

Longer stems retain tone on the particle, which spreads to the left.
naa ngóyáá! né kú
n-vogóyáá! né kú llara
ni vahííríítí rí
na vakáráánge kí hara
n-oogoyááne kú llara
na vágánágá! né kú
na vagánágá né ndí
n-oovódóng'áne kí hara
'I will be disarranged a bit'
'you will be disarranged a bit once'
'they will snore when'
'they will fry what yonder'
'you will be disarranged a bit once'
'they will think a bit'
'they will think this way'
'you will go around what yonder'

When the tone is assigned to the last vowel, either the tone of the verb and that of the particle are separated by downstep (83a), or more commonly, particle tone deletion applies in (83b).
\[
\begin{array}{ll}
\text { a. } & \text { na varyí 'kú } \\
\text { n-aaté! kí llara } \\
\text { n-ootémé !rí } \\
\text { na kurímí ' 'hó } \\
\text { na korégé !ndí } \\
\text { na kurímí !hó karóvnu } \\
\text { na vagúrí 'kí llara } \\
\text { naa mbégé 'kú vwaangu } \\
\text { na vagérízí 'kú korıma }
\end{array}
\]
b. na kuryí go
naa nzí go
na vanwí ri ovosera
n-aanwí kı
nı vagwí ri
'they will eat a bit'
'he will bury what once'
'you will chop when'
'we will plow by it'
'we will win this way'
'we will plow by it now'
'they will buy what once'
'I will shave a bit quickly'
'they will try a bit to plow'
'we will certainly eat '
'I will go certainly'
'they will drink porridge when'
'he will drink what'
'they will fall when'
```

nı varyí ri
na vagorí kı
na ndémé kı llara
na varóré nd-orokeyo
n -aatégé ri
ni vadééké ri
n-ひuháándé ho vwaango
naa ngóónyé r-iavaando
n -aachérévé ku s-áá'mgóní
na vávímmbúllí h-avageni
nı vagúrízí ri

```
'they will eat when'
'they will buy what'
'I will chop what once'
'they will see the banana farm thus'
'he will trap when'
'they will cook when'
'you will get stuck quickly by it'
'I will help the people when'
'he will be late like Amguni a bit'
'they will unroof for the guests by it'
'they will sell when'
A further prediction is that a particle retains its tone after the M4 remote past, since that tone is always assigned to a non-final stem-initial vowel, thus conditions for shift are not satisfied (the verb always has a tone) nor are conditions for deletion satisfied (the tone is never word-final in this tense).
```

váánwwá rí
váá!gwá rí
vaarơ!má rí
vaanó!gá rí
kwáá'tá kú
viílgórá rí
vướmbáká rí
vaachéé'rízá rí
vaaséé!mbéllá rí
vaamó'rómá rí
vaavó!dóng'áná rí
vaayá!vúgúllá rí

```
```

'they drank when'
'they fell when'
'they bit when'
'they plucked when'
'we buried a bit'
'they opened when'
'they built when'
'they greeted when'
'they weeded when'
'they spoke when'
'they went around when?'
'they unburied when'

```

It is also correctly predicted that the particle retains its tone after the M8 stative form of the verb, since the only tone in the verb is word-initial, and because the verb is not toneless, there is no shift.
```

wáá'gwá kú
yáá nwá! kí
yáárya ndí vwaangu
váá'gwá rí hamugera
kwáárímá kú
váá'vóhá ${ }^{\prime}$ kí
kwáá'ríingá 'kí
ndáádeeká kớ! dáave
wáá kárágá kí llara
váá!góyááná kú
ndáá! séémbéllá kú ! dáave
váá'vódóng'áná rí

```
'you are in the state of having fallen a bit'
'they are in the state of having drunk what'
'he is in the state of having eaten quickly how'
'they are in the state of having fallen when at the river'
'we are in the state of having dug some'
'they are in the state of having tied what?'
'we are in the state of having folded what'
'I have never cooked'
'you are in the state of having judged what once'
'the guests are a bit confused'
'I have never weeded'
'they are in the state of having gone around when?'

Because M2 undergoes melodic tone deletion, we predict the possibility of particle tone shift to a verb with the M2 pattern. However, we find that tone remains on the particles, optionally spreading to the
left and optionally splitting into \(H^{\prime}\) H prepausally, but not shifting. This includes both toned and toneless verbs regardless of stem shape.
\[
\begin{array}{ll}
\text { arinwa kú } & \text { 'he will drink a bit' }  \tag{86}\\
\text { arigwá hó } & \text { 'he will fall there' } \\
\text { arigwá 'hó } & \text { 'he will fall there' } \\
\text { varivega rí } & \text { 'they will shave when' } \\
\text { orivegá 'kú } & \text { 'you will shave a bit' } \\
\text { arimáná 'kí } & \text { 'he will know what' } \\
\text { variyává 'rí } & \text { 'they will bury when' } \\
\text { arideeká 'rí } & \text { 'he will cook when' } \\
\text { varitaangaazá 'rí } & \text { 'they will announce when' } \\
\text { aricheerizá kú } & \text { 'he will greet a bit' } \\
\text { arivohóóllá 'kú } & \text { 'he will untie a bit' }
\end{array}
\]

In phrase medial position, there are options for Leftward Spreading, but we do not find shift.

\author{
arirya kí za \\ arivega hó za \\ kurinwa kí llara \\ varinwa rí vwaangu \\ arivegá gú marova \\ arivegá ndí ! n -órógéé'mbé gáráha \\ kurivohóóllá kí llara \\ varígứrá hó vwaango
}
'he will only eat what'
'he will just shave there'
'we will drink what once'
'they will drink quickly when'
'he will certainly shave Marova'
'how will he shave quickly with a razor'
'we will untie what once'
'they will buy by it quickly'

These data clarify that the tone is not removed phrase-medially, it remains present and therefore blocks Tone Shift. However, data in from M9 and data from guuga-modifiers present a different impression, that the tone should be deleted, thus we have a paradox that needs to be resolved, as we will discuss in the next section.

Analogous to the loss of melodic tone of M2, the imperative tone also has a phonological effect, that tone shift does not take place from a particle even though the melodic tone deletes.
\begin{tabular}{ll} 
rya kú & 'eat a bit!' \\
sha kú llara & 'grind a bit once!' \\
ng'usá kú & 'pull a bit!' \\
gurá kí llara & 'buy what once!' \\
rwaaná! kú & 'fight a bit!' \\
bımá kú llara & 'measure a bit once!' \\
sigámá! ndí & 'kneel this way!' \\
korógá! kú & 'stir a bit!' \\
chiríng'áná ndí & 'be quiet thus!' \\
veezégérá' ndí & 'belch thus!' \\
rıma ndí ku & 'plow this way a bit!' \\
vegá kú vuza & 'just shave a bit!'
\end{tabular}

This outcome is expected under the premise that the imperative actually has M2, plus a special rule affecting toneless verbs.

Unlike the M1 pattern of toneless verbs which are also phonetically all-L toned, the conditional in M11 does not allow leftward tone shifting of the particle's tone, because M11 has a specified L.
```

varavariza kú 'if they had counted a bit'
aravogora kí 'if he had taken what'
variikara hó
aratega ndí
kurageenda kú
arachıring'ana rí
araseka kú
'if they had sat at'
'if he had trapped how'
'if we had walked on it'
'if he had been silent when'
'if he had laughed a bit'

```

Although the M2, M5 and M11 final tones show evidence of still being phonologically present even though they are not pronounced, the final M7c tone of the explanatory past behaves differently. We observe that (a) particles are toneless after CV toned verbs, (b) tone shifts to the end of a toneless verb and (c) it spreads into a verb having a tone. This is exactly the pattern of M1 verbs.
a. kwaakaryá kv kwaakáryá ku vaakakwá go
b. vaakázyá ri ndaakágúrá kı waakárímá ho ndaakárímá kv kwaakáséémbéllá kı waakámórómá kv kwaakádígíná ndı vaakákúrứrá kı
c. yaakáté'má rí
kwaakákérá 'kú vaakákứzá' ndí yaakáháá'ngárízáná 'kú vaakákờzá ndí
'we ate a bit'
'we ate a bit'
'they certainly paid dowry'
'they went when'
'I bought what'
'you plowed by it'
'I plowed a bit'
'we weeded what'
'you spoke a bit'
'we tickled thus'
'they dragged what'
'he chopped when'
'we milked a bit'
'they died thus'
'he argued a bit'
'they died thus'

This pattern is replicated in (91) with phrase-medial particles
a. kwaakaryá ku vwaango vaakakwá gu vwaangu
b. waakarímá ho vuza vaakázyá ri vwaangu yaakádóyá ndı marova ndaakárímírá ku marova kwaakáséémbéllá 'kí gứưgá waakámórómá ku vwaango kwaakádígíná ndı marova vaakákúrứrá kı hára
'we ate a bit quickly'
'they certainly paid dowry quickly'
'you only chopped by it'
'they went when quickly'
'he hit Marova thus'
'I plowed a bit for Marova'
'we weeded what for grandfather'
'you spoke a bit quickly'
'we tickled Marova thus'
'they dragged what yonder'
c. yaakáté'má rí hara
kwaakáké! rá kú zing'oombe vaakákứzá ndí ham'gera
'he chopped when yonder' 'we milked the cows a bit' 'they died thus at the river'

As suggested above, this can be easily explained by a purely morpho-syntactic solution, that M7b tone is only affixed to a VP-final verb.

In the M10 hodiernal perfective, because the melodic tone is not deleted, we do not predict that tone shifts to a surface toneless verb word, which would be a lexically-toned verb.
aryir kí
kohoni kú
ngeri kú
oteji ndí
avoni kú
aheenzi kú
vadeechi rí
kucherevi kú
'what did he eat?'
'we got better a bit'
'I milked a bit'
'how did you trap?'
'he harvested a bit'
'he looked a bit'
'they cooked when'
'we were a little late'

It is noteworthy that spreading does not take place between the particle and an underlyingly toned verb.

When the verb is toneless with the structure CVCV, the particle has no tone. This is because the verb has a final tone, assigned to V2.
kuhání kı
ndorí kı
koséchí ri
arají gu
vduyí ndı
'we closed what'
'I saw what'
'when did we laugh?'
'he certainly promised'
'you beat this way'
On the other hand, when a toneless root is longer, the melodic tone is on a non-final vowel, so the tone of the particle is not deleted.
```

ndúú ${ }^{\text {mí }}$ kú
kıháá'ndí ndí
mburứ'chí ndí
avágá'rí ndí
koháá $n d i ́ i ́ c h i ́ ~ r i ́ ~$
koséé'mbélléé ndí
agoyáá'ní kú
varakứu'rí kí
kıdíná gání kú

```
'I jumped a bit'
'it got stuck how'
'I flew this way'
'he spread out this way'
'we wrote when'
'we weeded this way'
'he went around a bit'
'what did they release?'
'it hardened a bit'

The M9 hesternal perfective loses its melodic tone before a modifier, as noted previously. A noteworthy difference between the behavior of the M9 tone and M2 or other melody-deleting tenses is that tone shifts from the particle to the preceding toneless verb.
\begin{tabular}{|c|c|}
\hline kwaahání kı & 'we closed what' \\
\hline kwaahoní ko & 'we got better a bit' \\
\hline ndaarórí kı & 'I saw what' \\
\hline chaaháándí ndı & 'it got stuck how' \\
\hline ndaasáárí go & 'I certainly prayed ' \\
\hline ndaatứ̛́mí ku & 'I jumped a bit' \\
\hline ndaabórưchí ndı & 'I flew this way' \\
\hline ndaasírrúrí kv & 'I chopped weeds a bit' \\
\hline kwaaháándíćchí ri & 'we wrote when' \\
\hline chaadínágání kv & 'it hardened a bit' \\
\hline
\end{tabular}

Contrasting with the situation with M2, this behavior provides evidence for a stronger form of removal of the melodic tone like the case of the M2 tone, not just phonetic suppression; yet unlike M7b where the phrase-medial tone pattern simply changes to M1, we still see the effect of lexical tone deletion in toned verbs like -túuma or -hóna. M9 is similar to M2, yet different in that the citation pattern is "just final", not "second vowel or final". This is explained in \(\S 2.4\) by positing that the M9 tone is \(\mathrm{T}_{\mathrm{F}}\), not \(\mathrm{T}_{\mathrm{F}, \beta}\). The upshot of the M9 data is that we have phonological evidence for two kind of "deletion", one being where the melodic tone is not phonetically realized but is visible to particle-tone throwback, and one being that it is invisible to throwback. This distinction has to be somehow encoded in the rule system (specifically, deletion for \(\mathrm{M} 2 \mathrm{~T}_{\mathrm{F}, \beta}\) is ordered between two specific rules but deletion for \(\mathrm{T}_{\mathrm{F}}\) precedes both).

\subsection*{4.4.2. GUUGÁ MODIFIERS}

The general tone pattern of guugá-class modifiers after M1 was briefly sketched above: there is initial tone unless the preceding verb has a final tone. Further examples are below, from a wider range of tenses and modifiers.
\[
\begin{align*}
& \text { Final tone }  \tag{96}\\
& \text { aranwá! kíndí kí } \\
& \text { uratyá! kóózá } \\
& \text { ndatyá ! báábá } \\
& \text { vaakutyá vwahá hara } \\
& \text { varatyá samaníini } \\
& \text { varáryá 'kávírí } \\
& \text { yaakóryá 'háí } \\
& \text { áráryá sarasíini } \\
& \text { varatyá 'káróonu } \\
& \text { korátyá 'chígírá kı } \\
& \text { varaká'ráángá kí'ndí kí } \\
& \text { kuráyáárá ko!ozá } \\
& \text { ndaakóvé'gá bá 'ábá } \\
& \text { umurógoori yaakuká'rágá vwá'há } \\
& \text { vaakwướ'mbáká sámanímı } \\
& \text { kokó'vódóng'áná ká'vírí } \\
& \text { varavó'hóóllá sá'bwími }
\end{align*}
\]
'he will drink what?'
'you will fear uncle’
'I will fear father'
'they feared who yonder'
'they will fear 80 '
'they will eat twice'
'he has eaten where'
'he will eat 30 '
'they will fear now'
'we will fear why?'
'they will fry what?'
'we will sue uncle'
'I shaved father'
'the Logoori that judged who' 'they built 80 '
'to go around you twice'
'they will untie 70 '
yaakóvó!dóng'áná há'í
ndaréét-árobaíni
arávé'gá sá'rásíini
varávó! dóng'áná ká!rúunv

\section*{Toneless root}
kuráshá kí'ndí kí
waakórórá kó'ózá
wáákúsứv́virrá bá!ábá
omsóóréri yaakuvárízá vwá'há
arágávưrányá ká!vírí
rwà' ndáákúbiímá sá'bwímı
aráshá há!í
yaakúgớríz-árubaínı
aráshá sá!rásíini
árágávớrányá ká!rúvno
varáshá chígırá kı
'he went around where?'
'I will bring 40'
'he will shave 30 '
'they will go around now'
'we will grind what?'
'you saw uncle'
'you believed father'
'the boy that counted who'
'he will divide twice'
'when I measured 70'
'he will grind where?'
'he sold 40 '
'he will grind 30 '
'he will divide now'
'they will grind why?'

Verbs with the M3 pattern clarify the process of tone assignment / deletion to guuga-modifiers, since as we see in (97), those modifiers never have initial \(H\), no matter where the verb's tone is. While the first set should not have initial tone given that the verb has a final tone, the tone of the second set of verbs is not final, which establishes that the position of the tone is not what governs the initial tone of the modifier.

Final tone on verb
na kushí !'sábwímı
naa ngwi!́' kávírí
n-oororé 'gúúgá
naa ngúri! víné
na kweeyé' kárúono
n-aagayé! báábá
n-aakuzí! kárúunu
na komórómé 'kávírí
na kwơmbáké! sámáními
na koháámbíkí! kárúonu
naa ndígínyí! báábá
na kogérízí! sárásínı
Non-final tone on verb
na kovéézégé'ré kátáánó
na mbéézégé'ré kávágá
na vágánágá né kávírí
n-vusímógớkí'zí gớ̛́gá
n-voríindíi'llí báábá
na kovódóng'álné báábá
na kuháánzơớ kí kávírí
n-aasínyááré kávágá
na vatáángáá'zé kárưonu
'we will grind 70'
'I will fall twice'
'you will see grandfather'
'I will buy 4'
'we will sweep now'
'he will forbid father'
'he will die now'
'we will speak twice'
'we will build 80 '
'we will be drunk now'
'I will tickle father'
'we will try 30 '
'we will belch 5 times'
'I will belch thrice'
'they will think twice'
'you will revive grandfather'
'you will wait father'
'we will go around father'
'we will talk loudly twice'
'he will sneer thrice'
'they will announce now'
n-ưgírúng'á!nyí kóózá
n -aavóhóóllé báábá
naa mbáángárí'záné kávírí
na avưrứgá nyé kámíllı
na avohóó'llé kóózá
na kurakúvórí sítínn
'you will turn around uncle'
'he will untie father'
'I will argue twice'
'he will stir properly'
'he will untie uncle'
'we will release 60'

We therefore arrive at the generalization that if the verb contains a melodic tone, the initial tone of guuga-modifiers is deleted (or left associated).

This generalization predicts - correctly - that there is also no initial tone after a verb in the M4 remote past.
```

yáá'shá háí
kwááá!gá kóózá
vaavódong'ana karóvnu
yaagá'vúráná kávírí
vaagá! nágáná sítínı
yáárya sarasímı
váágánagana sitírni
vaavó'há vwáhá
yááváá'yírá gúv̛gá
yaagúra vyaangá

```
'he ground where?'
'we promised uncle'
'they went around now'
'he divided twice'
'they thought of 60 '
'he ate 30 '
'they thought of 60 '
'they tied who?'
'he visited grandfather'
'he bought how many'

The M8 melody in the stative gives evidence for a refinement of the analysis, since these modifiers do take initial tone after this tense.
```

cháá'shá ká'bísa
wáá!séémbéllá gú'úgá
yáá'rưv́tá gú úgá
yáá'kúzá há'í
váá'káránggá há'í
wáá'ryá há'í
váá!vódóng'áná ká'róvnv
yáá'rórá kávvírí
yáá!gávơrányá ká!virí
kwáá'dírá kó'ózá
kwáá'yáárá kó!ózá
váá!gánágáná sítímı
váávóhóóllá sá'bwími
yáá'máná sá!rásímı
váá'vóhá vwá'há

```
'it is totally ground'
'you are in the state of having weeded for grandfather' 'he is in the state of having visited grandfather'
'he is in the state of having died where?'
'they are in the state of having fried where?'
'you are in the state of having eaten where?'
'they are in the state of having gone around now'
'he is in the state of having seen twice'
'he is in the state of having divided twice'
'we are in the state of having held uncle'
'we are in the state of having sued uncle'
'they are in the state of having thought of 60 '
'they are in the state of having untied 70 '
'he is in the state of having known 30 '
'they are in the state of having tied who?'

What is special about the M8 melody is that it is assigned at the beginning of the word, not within the stem. This indicates that the fact of being a pre-stem tone takes it out of the domain of the melodic tones which cause deletion of initial tone on guuga-modifiers. Since we also observed that particlethrowback does apply in (85) after verbs in the stative tense, we know (which is evident from what the two rules do) that particle tone throwback is not the same rule as the rule associating H to guugamodifiers.

Since the explanatory past M7c has no tone melody except prepausally, we predict that it is exactly like the M1 pattern, where H is present at the beginning of the modifier everywhere, except after CV toned stems - as is verified below.
yaakáshá sá'bwími
kwaakágwá ká'rúvno
ndaakáshá ká! vágá
ndaakáré' gá ká' vírí
vaakagáyá bá'ábá
vaakárórá vứrí
ndaakagúrá vyá'ángá
waakásướ'rá ká'vágá
waakadéé ká ká'né
ndaakávó'dóng'áná kó!ózá
kwaakávárízá ká!mílı
kwaakásứv́vírá sáláama
yaakábádứrá kó'ózá
waakánwá! kává!gá
ndaakátyá gúúgá
waakánwá! káné
yaakanwá! gárí
waakaryá! kírí
vaakanwá! gáángá
vaakánwá! gáángá
yaakáryá! kávírí
'he ground 70'
'we fell now'
'I ground thrice'
'I won twice'
'they forbade father'
'they saw how much'
'I bought how many'
'you refused thrice'
'you cooked 4 times'
'I went around uncle'
'we counted correctly'
'we believed safely'
'he whipped uncle'
'you drank thrice'
'I feared grandfather'
'you drank 4 times'
'he drank how much'
'you ate how much'
'they drank how many'
'they drank how many'
'he ate twice'

Melody M7a of the immediate imperative on the other hand always has a melodic tone. It follows from that that the modifier never has an autonomous tone.
kagwí 'kárúunu
katé ! gúúgá
katomí 'kózózá
kareeté 'gứúgá
kakweesé kamíllı
kaminá gé káróono
karakướrí kóózá
kazaazáá! mé sáláama
kahưrứ̛́ví! kávírí
kavohó'óllé! báábá
kahónó! nóké' kávírí
kasimúgukizí 'kóózá
'now fall now!’
'now bury grandfather!'
'now send uncle!'
'now bring grandfather!'
'now pull correctly!'
'now stir now!'
'now release uncle!'
'now taste safely!'
'now take a break twice!'
'now untie father!'
'now escape twice!'
'now revive uncle!'

The M10 hodiernal perfective has a melodic tone which does not delete phrase-medially, therefore we expect that guuga-modifiers do not have intial tone after M10, which is correct.

Toned verbs
koveji baabá
vatemi kavírí
'we shaved father'
kodeechi sitíini
'they chopped twice'
ngoonyi baabá
abomori samanímı
njerevi kavírí
njeerizi gưgá
kohaambaanyı kavirı \({ }^{\circ}\)
'we cooked 60'
'I helped father'
'he destroyed 80 '
'I was late twice'
'I greeted grandfather'
'we combined twice'

\section*{Toneless verbs}
kugứrí' sábwírnı
nzeyị! sáláama
kerorwí! kátáánó
kubứrớchí sáláama
vagayí! kává'gá
kuchóó 'rí sí'tíini
agééndi kává!gá
móró! mí kává!gá
abádư'rí kávírí
ndáándullıı kooza \({ }^{\circ}\)
vagánágani sitíini
'we bought 70 '
'I swept safely'
'it has been seen 5 times'
'we flew safely'
'they forbade thrice'
'we drew 60'
'he went thrice'
'I spoke thrice'
'he whipped twice'
'I tore for uncle'
'they thought of 60 '
Likewise, the melodic tone of the M11 counterfactual does not delete phrase-medially, therefore guuga-modifiers are initially-toneless after M11, even though they resemble toneless M1 verbs.
aratya kırıha \({ }^{\circ}\)
ararya vyaangá
varanwa garí
ndatoonga zirí
varadeeka kavírí
varakoona gơgá
kuravohoolla vaangá
kuravuruga vorí
koragura garí
varavariza kavágá
varavariza sitíini
aravariza vaangá
varazaazaama vyaangá
'if he had feared which one?'
'if he had eaten how many?'
'if they had drunk how much?'
'if I had paid how much?'
'if they had cooked twice'
'if they had helped grandfather'
'if we had untied how many?'
'if we had mixed how much?'
'if we had bought how much?'
'if they had counted thrice'
'if they had counted 60'
'if he had counted how many?'
'if they had tasted how many?'
In the previous section we noted a difference between M9 and M2 in terms of application of particle shift. The tone of guuga-modifiers serves as an important diagnostic of phonological behavior and therefore features. We observe in (104) that these modifiers have the canonical post-L behavior, as shown in the following examples of the indefinite future.
(104)
arisíníkizá kí'ndí kí arirumá kó'ozzá arireetá sá' rásíni
aricheerizá vátáánó
arihứllá sá 'rásíni arikooná vwá'há aribımá ká'vágá
arirímá gớríhá arivegá gútúgá arigééndá chígrrá \(\mathrm{kı}\) varígwá há'ríhá varizaazáámá vyà'ángá váriséémbéllá há'í
kurigứrá gá'rí
'he will annoy what'
'he will bite uncle'
'he will bring 30 '
'he will greet 5 '
'he will hear 30 '
'he will help who'
'he will measure thrice'
'he will plow which one?'
'he will shave grandfather'
'he will walk why?'
'they will fall by which?'
'they will taste how many?'
'they will weed where'
'we will buy how much?'

Other tenses with the M2 pattern shown the same fact.
ningíráá ká'míllı
nínzzíráa sá láam

> kudíríá kó'ózá
akedeekérá vwá'há
akıvilká sá'rásínı
kúkírímír-áárobaini
kokekoonyá kó'ózá
kukirakươrá gútúgá
arikachiríng'áná ká míllı
ndikagavớrányá kí'ndí kí
varikareetá sítími
urikuombáká ká'míllı
orikakweesá zívírí
arikasuurá ká'né
'I am entering properly'
'I am working safely' 'we are holding uncle'
'he is still cooking for who?'
'he is still storing 30 '
'we are still cooking for 40 '
'we are still helping uncle'
'we are still releasing grandfather'
'he would be quiet properly'
'I will divide out what?'
'they would bring 60 '
'you would build accurately'
'you would pull 2'
'you would refuse 4 times'
Since deletion of melodic tone in M2 results in initial tone in guuga and the imperative M5 is essentially a non-prefixing subcase of M2, we predict that there should be initial tone in guuga after the imperative as well. This is mostly true as seen in the following examples.
reetá bá'ábá
cheerízá gờ'̛́gá
rasá kó'ózá
ng'usá ká'vágá
reetá ká róvono
vegá ká' vírí
tará sá'rásínı
huozá kávirí
geendá sá'láama
vitá sál láama
vohóóllá vá'né
gurá zí'virí
'bring father!'
'greet grandfather!'
'throw at uncle!'
'pull thrice!'
‘bring now!’
'shave twice!'
'mention 30!'
'blow twice!'
'walk safely!'
'pass safely!'
'untie 4!’
'buy 2 !'

A noteworthy complication is that CV imperatives trigger exceptional deletion of the initial tone, regardless of whether the stem is toned or toneless.

Toned stems
ta gougá
nwa kavágá
rya vitáánó
rya kavágá
tya baabá
tya koozá

\section*{Toneless stems}
gwa kárúunu
gwa saláama
sha kavágá
sha sarasímı
zya háí
'bury grandfather!'
'drink thrice!'
'eat 5!'
'eat thrice!'
'fear father!'
'fear uncle!'
'fall now!'
'fall safely!'
'grind thrice!'
'grind \(30!\) '
'go where!'

We also noted that the hesternal perfective M9 loses its melodic tone before a modifier, but it is different from M7b where the melody is not even added phrase medially (thus M7b is the same as M1). The crucial difference is that the lexical toned / toneless "re-emerges" phrase medially in M7b, but phrase-medially, M9 behaves like a toneless verb in M1 - the trace of the melodic tone exists in the form of lexical tone deletion. We observe that pattern before guuga-modifiers as we did with CV particles.

\author{
(108) \\ vaashíí ká'vágá \\ waatée gú 'úgá \\ ndaanwíí sá rásímı \\ kwaarorí ká'vírí \\ chaarórwí ká'táánó \\ vaagééndí chígırá kı \\ kwaakoonyí gứ úgá \\ ndaayéyí ká! bísa \\ kwaarájí kó'ózá \\ kwaagứrí sá'bwímı \\ kwaahaambáányí ká vírí \\ vaakárájí ká'vágá \\ waasınáárí chígırá kı \\ yaabómórí sá! mánínı \\ yaagánágání ká'virrí \\ kwaagávưrányí ká!mílı
}

The challenge is to integrate the disparate behavior of M2. Just to cover the empirical bases, (109) present relative verb forms of M2, where there is never melody deletion, and we see that guuga words do not receive initial tone when the melodic tone is retained.
(109)
rwá varitya guugá
rwá ndiháánda kává'gá
rwá kurikora kamíllı
rwá koriduuká! gúúgá
rw-árisémá! báábá
aváána varigwá 'kávágá
'when they will fear grandfather'
'when I will get stuck thrice'
'when we will do properly'
'when we will reach grandfather'
'when he will insult father'
'the children who will fall thrice'

The table in (110), which summarizes the behaviors of patterns according to melody content and CV versus guuga context, may aid in understanding the data patterns. Bold marks the minority pattern, the one more likely to be the result of a specific rule.
\begin{tabular}{|c|c|c|c|c|}
\hline & Melody content & Floats? & CV & guugá \\
\hline M2 & \(\mathrm{T}_{\beta, \mathrm{F}}\) & Yes & Tone on particle & Tone on modifier \\
\hline M2(rel) & \(\mathrm{T}_{\beta, \mathrm{F}}+\) ? & Yes & Tone on particle & No tone on modifier \\
\hline M9 & \(\mathrm{T}_{\mathrm{H}}\) & Yes & Tone on verb & Tone on modifier \\
\hline M10 & \(\mathrm{T}_{\beta}\) & Yes & Tone on particle & No tone on modifier \\
\hline M3 & \(\mathrm{T}_{2}\) & No & Tone on particle & No tone on modifier \\
\hline M4 & \(\mathrm{T}_{1}\) & No & Tone on particle & No tone on modifier \\
\hline M8 & \(\mathrm{T}_{\text {[ }}\) & No & Tone on verb & Tone on modifier \\
\hline M7a & \(\mathrm{T}_{2}+\mathrm{T}_{\mathrm{F}}\) & Yes & (Deletes) & No tone on modifier \\
\hline M11 & \(\mathrm{T}_{\mathrm{L}, \mathrm{F}}\) & No & Tone on particle & No tone on modifier \\
\hline M1 & (none) & & Verb \(\sim\) particle & Tone on modifier \\
\hline
\end{tabular}

The most transparent approach to particle tone follows the hint from the M1 data, that shift happens when the stem is toneless, so what distinguishes patterns M9 and M2 is whether the melodic tone is deleted, and the derivationally pertinent question is, when is it deleted? Since M9 acts uniformly like a toneless form, we should assume that its tone is deleted early, thus is it always gone before a modifier.

Since M2 acts differently for guuga-words versus particles, we should assume that the M2 tone deletes between the relevant sandhi rules. This does entail that deletion of \(\mathrm{T}_{\mathrm{F}}\) and deletion of \(\mathrm{T}_{\mathrm{F}, \beta}\) are different rules, with deletion of \(\mathrm{T}_{\mathrm{F}}\) being ordered earlier. Given that premise, we focus on the differential effect of still having a melodic tone for the computation of M2 verb plus particle, versus deleting that tone for computation of M2 verb plus guuga-modifier. As laid out in the schematic comparative derivations in (111), first the M9 tone deletes. Then \(\mathrm{T}_{1}\) links to a particle if it is preceded by a stem tone in the verb, and this applies to M2 because it still has a stem tone. Effectively, a stem tone forces the tone of a particle to link to the particle. Rather than seeing the assignment of tone to a preceding toneless verb as being primarily driven by there being a toneless stem, we can equally see the "driving force" as being the definitive association of \(\mathrm{T}_{1}\) to the particle after a stem melodic tone, leaving shift away from the particle as a subsequent alternative.

The third step is to delete the M2 melody, which gives M2 and M9 forms parallel representations. Next, T1 links to the initial vowel of a polysyllable modifier, that is, a non-particle. The exact conditions for association to a guuga-modifier must be worked out, but we have identified the essential fact that the tone of such modifiers is lost when the preceding word has a stem melodic H , implying a deletion rule followed by a general association of T 1 to the left edge of a modifier. What then remains, after the tone of guuga-modifiers is disposed of, is that a remaining floating tone links to the right edge of the preceding word.
(111)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \mathbf{M 2} \\
& {\left[\mathrm{T}_{\beta, \mathrm{F}}\right]}
\end{aligned}
\] & & \(\xrightarrow{\text { M2 }}\) & [ \(\mathrm{T}_{1}\) ] & & & & \[
\left[\mathrm{T}_{1}\right]
\] & \multirow{2}{*}{0: underlying} \\
\hline V & cv & V & guuga & V & cV & V & guuga & \\
\hline \(\left[\mathrm{T}_{\beta, \mathrm{F}}\right]\) & & \multicolumn{2}{|l|}{\(\left[\mathrm{T}_{\beta, \mathrm{F}}\right]\left[\mathrm{T}_{1}\right]\)} & & [ \(\mathrm{T}_{1}\) ] & & [ \(\mathrm{T}_{1}\) ] & \multirow{2}{*}{1: \(T_{F}\)-deletion} \\
\hline V & cv & V & guuga & V & cV & V & guuga & \\
\hline \(\left[\mathrm{T}_{\beta, \mathrm{F}}\right]\) & \(\left[\mathrm{T}_{1}\right]\) & \multicolumn{2}{|l|}{\(\left[\mathrm{T}_{\beta, \mathrm{F}}\right]\left[\mathrm{T}_{1}\right]\)} & \multicolumn{2}{|r|}{\(\left[\mathrm{T}_{1}\right]\)} & \multirow[b]{2}{*}{V} & \(\left[\mathrm{T}_{1}\right]\) & \multirow{2}{*}{2: \(T_{1}\) particle link} \\
\hline V & cv & V & guuga & V & cv & & guuga & \\
\hline & \(\left[\mathrm{T}_{1}\right]\) & \multicolumn{2}{|r|}{\(\left[\mathrm{T}_{1}\right]\)} & \multicolumn{2}{|r|}{\(\left[\mathrm{T}_{1}\right]\)} & \multirow[b]{2}{*}{V} & [ \(\mathrm{T}_{1}\) ] & \multirow{2}{*}{3: \(T_{F, \beta}\) deletion} \\
\hline V & cv & V & guuga & V & cv & & guuga & \\
\hline & \(\left[\mathrm{T}_{1}\right]\) & & [ \(\mathrm{T}_{1}\) ] & & [ \(\mathrm{T}_{1}\) ] & & [ \(\mathrm{T}_{1}\) ] & \\
\hline V & cv & V & guuga & V & cv & V & guuga & 4. TI polysyl link \\
\hline & \(\left[\mathrm{T}_{1}\right]\) & & [ \(\mathrm{T}_{1}\) ] & & \(\mathrm{T}_{1}\) ] & & [ \(\mathrm{T}_{1}\) ] & \\
\hline & & & & / & & & & 5: \(T_{1}\) shift \\
\hline V & cv & V & guuga & V & cv & V & guuga & \\
\hline
\end{tabular}

\subsection*{4.4.3. DEMONSTRATIVES}

The final set of phrasally-alternating modifiers are the demonstratives, the ones constructed around a secondary agreement morpheme followed by a distal (-ra) or proximal (-no) morpheme. As noted above and further exemplified below, demonstratives have initial tone unless the preceding verb ends in H. In the case of M1, this means that the stem would be a a CV toned stem.
\begin{tabular}{ll} 
ndaakokwá vara & 'I paid those' \\
yaakúryá hara \\
ndaakonwá gano & 'he has eaten there' \\
arátá vara & 'I have drunk this' \\
aranwá vira & 'he will bury those' \\
'he will drink those' \\
aráshá vóra & 'he will grind those' \\
árágwá hára & 'he will fall there' \\
aráhóllá vára & 'he will hear those' \\
ará́'!gá váno & 'he will shave these' \\
arádớyá váno & 'he will hit these'
\end{tabular}
\begin{tabular}{|c|c|}
\hline urágúrá múno & 'he will buy in it' \\
\hline varakóó'yá vára & 'they will help those' \\
\hline ánóórá kínu & 'you will get this one' \\
\hline ká'rágá vára & 'he will judge those' \\
\hline aráká ráángá hára & 'he will fry yonder' \\
\hline arávó!dóng'áná hára & 'they will go around yonder' \\
\hline várízá vára & 'he will count those' \\
\hline árákứ̛́rá hára & 'he will release yonder' \\
\hline záázáámá vára & 'you will taste those' \\
\hline hóónóóná zíra & 'he will calm those' \\
\hline árágávơrányírá vára & 'he will divide for those' \\
\hline
\end{tabular}

Since M2 undergoes a loss of melodic tone phrase-medially, we can easly understand why demonstratives are H -initial after an M 2 verb: there is no final H that would trigger deletion of demonstrative H .
(113) arigwa hára
kukıtya vára
arivega vára
urikabıımá kíra
kúkívárízá vára
kokedeekerá vára
varirákúúrá kíra
arivohóóllá vára
vataangáázáá hára
kúrígávórányá múno
kusíníkízáá váno
arikagávúrányá víra
'he will fall there'
'we are still fearing those ones'
'he will shave those'
'you would measure that'
'we are still counting those'
'we are still cooking for those'
'they will release that one'
'he will untie those one'
'they are announcing yonder'
'we will divide up in it'
'we are annoying these'
'he would dole out those'

However, in the subordinate clauses of (114) where tone erasure does not apply, a final tone does lead to deletion of demonstrative when the final vowel has tone.
a. vwahá varishá vura
urí'géná hara
omóúnd-arigúrá kira
rw-ákıkuongá vano
umứ̛́nd-aríkaráángá kıra
b. rwá varitya vára
rwá varırya kínu
avasóóréri varirákúớ rá kíra
aváána varibíí! má hára
urívega vára
'who will grind those'
'the one who will wonder yonder'
'the person who will buy that one'
'when he is still chasing off these'
'the person who will fry that'
'when they will fear those ones'
'when they will eat this'
'the boys who will release that one'
'the children who will measure yonder'
'the one who will shave those'

We have treated the imperative melody M5 as the result of the same tone affix found in M2, plus deletion which in stem- and word-initial position. That tone deletes before a modifier, therefore we predict demonstratives never lose their tone after an imperative, which is the case.
kwa vára
gwa hára
vegá vára
maná vára
deeká víra
gerízá kínu
kárágá vára
rakướrá vára
vodóng'áná vára
simúgúkízá vára
garớkízá kíra
'pay those!'
'fall yonder!'
'shave those!'
'know those!'
'cook those!'
'try this!'
'judge those!'
'release those ones!'
'go around those!'
'revive those!'
'return that!'

We also correctly expect M9 to lose its melody and therefore not have a tone that causes deletion of the demonstrative tone, as verified in (116).

M9: hesternal perfective
yaasaallízí vára
vaatejí vára
ndaabíimí zíra
yaagúrí kíra
ndaatoongámínyí víra
vaayínnzírí hára
'he injured those ones'
'they trapped those ones'
'I measured those ones'
'he bought that one'
'I inverted those'
'they worked yonder'

The further prediction, for M 3 , is that there should be no H when the preceding verb is 1 or 2 syllables, or 3 syllables with a long penult, which is where the final vowel bears tone in this pattern.
\begin{tabular}{|c|c|}
\hline n-aanwí gara na utyí vano & 'he will drink those' 'you will fear these ones' \\
\hline n-voshí vouno & 'you will grind this' \\
\hline n -aavegé vara & 'he will shave those ones' \\
\hline na vasémé vano & 'they will insult these' \\
\hline n -oodééké kınv & 'you will cook this' \\
\hline na varííngí kıra & 'they will fold that' \\
\hline na kudưvơrí vinu & 'we will crush these' \\
\hline na vakaragé vano & 'they will judge these one' \\
\hline naa vasílingírí hano & 'they will stop at it' \\
\hline na kusáámbưrí zira & 'we will dethatch those' \\
\hline na varíndííllí hára & 'they will wait yonder' \\
\hline naa nzaazáá'mé zíra & 'I will taste those' \\
\hline naa ndákưv̛́rí váno & 'I will release these' \\
\hline n -aavódóng'á'né vára & 'he will go around those' \\
\hline nı vagánágá né váno & 'they will think of these' \\
\hline na mbéerérízí váno & 'I will mourn these' \\
\hline n -aavéézégé'ré hára & 'he will belch yonder' \\
\hline naa mbáángárí'záné hára & 'I will argue yonder' \\
\hline
\end{tabular}

In other words, demonstratives are more like CV particles, in having a 'robust' initial H - they are toneless only when the preceding verb ends in a final tone, and so far, that tone has been a surfacerealized tone. The one fact distinguishing demonstratives and CV particles is that particles are subject to tone shift, but demonstratives are not.

Based on these facts we correctly expect initial H after the M4 remote and the M8 stative, predictions that are verified in (118) and (119) respectively.
yáá'tá vára
yáá'shá vóra
yáágó'!rá kíra
ndáárí!má zíra
waaká!mátá vára
yaará'kúv́rá vára
yaakáraanga víra
vaavódong'ana hára
(119) wáá ryá kíra
yáá!shá vớra
yáá'máná vára
váátégá vára
yáá'nóórá kínu
yáá várízá vára
yáá'kárágá vára
yáá'sáállízá vára
'he buried those'
'he ground that'
'he bbought that one'
'I measured those ones'
'you caught those ones'
'he released those'
'he fried those'
'they went around yonder'
'you are in the state of having eaten that' 'he is in the state of having ground that' 'he is in the state of having known those' 'they are in the state of having trapped those ones' 'he is in the state of having gotten this one' 'he is in the state of having counted those' 'he is in the state of having judged those' 'he is in the state of having injured those ones'

M10 does not undergo melody deletion, and its tone remains unassociated in toned stems, because the M10 tone only associates to the second V in toneless stems. Although there is a melodic tone in all medial forms, that tone has no effect on the demonstrative as we see in (120), except in dimoraic toneless stems where the melodic tone associates to the verb-final vowel, giving rise to the condition for deletion of the demonstrative tone. This follows from the fact that the demonstrative loses its tone only when the final vowel of the preceding word has a tone.
\begin{tabular}{lll} 
a. & \begin{tabular}{l} 
ndorí vara \\
agéé'ndí hára \\
ngavú'ríríra kár
\end{tabular} & \begin{tabular}{l} 
'I saw those ones' \\
'he walked yonder'
\end{tabular} \\
urakúv́'rí váno & 'I divided that one'
\end{tabular}

The immediate imperative with pattern M7a does not lose its tone, and as we see in (121) demonstratives always lose their tone. This is almost as predicted, since this melody has a final tone which does not delete, however, this loss of tone even includes trisyllabic short penult stems where the final tone remains floating.
(121)
kang'oodé kinv
kasiníkizí vano
kavegé vara
karakướrí vara
kazyí hara
kasuondưranyí gano
kaduvúrı vora
(kaduvúri
'now write this!'
'now annoy these!'
'now shave those!'
'now release those!'
'now go yonder!'
'now pour these!'
'now crush that!'
'now crush!')

This is the one context where demonstrative deletion is not strictly based on a surface H , and I will point out that there is dialect variation in terms of whether the final syllable in kadovórI has a citation tone.

One final tense needs to be considered, the M11, which is a final specified L. The evidence of blocking Leftward Spread indicates that this tone remains phrase medially, notice however that the demonstrative tone does not delete in this context.
(122)
kuranyoora kíra
varavariza kínu
varakoona vára
kurasimugukiza váno
orariindıılla hára
ararıma háno
urakaraanga vínu
'if we had gotten that one'
'if they had counted this one'
'if they had helped those ones'
'if we had revived these'
'if you had waited yonder'
'if he had plowed at it'
'if you had fried these'

The tones which can appear word-finally and which do trigger demonstrative tone deletion are \(T_{2}, T_{\beta}\) and \(\mathrm{T}_{\mathrm{F}}\). By the logic of natural classes, those three tones should therefore have some unifying property setting them apart from \(T_{L}\). Ultimately, we must also account for the fact that \(T_{[ }, T_{1}, T_{2}, T_{\beta}, T_{F}\) all translate to a phonetic raised pitch target within the phonetic component, but \(\mathrm{T}_{\mathrm{L}}\) does not. One option for accomplishing that is to phonologically delete \(T_{L}\) at an appropriate derivational point. In that case, the problem posed by (122) is solved simply by deleting \(\mathrm{T}_{\mathrm{L}}\) before demonstrative tone is deleted.

\section*{5. Further Issues}

There are a number of other phrasal patterns which are relevant to the analysis of the preceding analysis, which have yet to be treated but which also bear on the final statement of these rules. One prominent example is (123), which illustrates an NP linker tone being triggered by certain definitizing modifiers like demonstratives and possesives, where tone goes to the penult.
kurıra
umuryaango
rishaamogoma
ikıhharaato
um'bano
Imidıgıro
kúríra kw-ízing'oombe
umuryáángo gwa marova
risháámgóma rya kısaato
ikıhárááto kıra
um'báno gura
imídígíro jira
'crying (of cows)'
'door (of Marova)'
'gecko (of Kisaato)'
'(that) famine'
'(this) knife'
'(those) crutches'

Analogous to the treatment of positioned tones in the melodic system, we can account for penult tone assignment by positing a syntactic marker whose content is \(\mathrm{T}_{\mathrm{P}}\), a penultimate-targetting tone. Although TP plays no known role in the verbal melody system, it does plan a role in nominal tone. We
furthermore need to scrutinize the demonstrative alternations and guuga-modifiers in light of the fact that demonstratives can be modifiers of nuons, and many guuga-modifiers are fundamentally nominal in nature.

A second general area for investivation is the problem of subject tone in (124) where a tone appears on a toneless word before the VP, analogous to particle shift.
\begin{tabular}{ll} 
um'biri & um'bírí guraguunda \\
avasooreeri & vasóóréérí vaséémbellee \\
eng'oombe & eng'oombé yaakarorwa \\
inaasoori & Inááóórí yaakogota \\
marova & maróvá yaarí yééng'íné
\end{tabular}

\author{
'the body (will rot)' 'the boys (weeded)' 'the cow (was seen)' 'the marijuana (just disappeared)' 'Marova (was alone)'
}

This too is a tone-only marker of syntactic structure, with an apparent relationship to particle shift tone assignment on the preceding word.

There are a number of other phrasal tonological facts which eventually need to be integrated into this theoretical framework. For example, in (125a) we see that an infinitive does not trigger insertion of "subject" tone, even though Marova is in some sense the subject of "cultivate". In (125b), contrary to the pattern shown above in (104), baabá does not have initial H after the verb, suggesting a difference in syntactic relation (how then is that realized in phonology?). In (125c), there is not only a tone at the end of the subject of the second S, there is also a tone at the end of the first S. Finally in (125d) we find other constructions with erasure of tone, attributed above to a construction suffix with \(\mathrm{T}_{\mathrm{F}, \mathrm{L}}\). all ot these facts need to be integrated into a unified account of melodic tones and phrasal sandhi.
a. vwáádína marova kurıma
b. korivega baab-Í' yáákaganagana
c. varárímá guug-í' yáá'káryá
'it was difficult for Marova to cultivate'
'we will shave after father thinks'
'they will plow after grandfather eats'
ndaakódéé \(k\)-ínámá na maróvá yaakóréét-amarwa \({ }^{\circ}\)
'I cooked the meat and Marova brought alcohol'
d. séénge 'aunt' seenge mokáána 'the girl's aunt' umwáámi 'chief' umwaami Rodéeji 'Rodeeji's chief' baabá 'father' baaba ródéeji 'Rodeji's father'```


[^0]:    * A caveat to the reader: this is a work in progress. I have changed the notation for identifying tones in the course of writing the paper, and hope that I have implemented those changes consistently, but it is possible that I have fouled up the symbols for sub-features somewhere.

[^1]:    ${ }^{1}$ Quasi-empirically, in the sense that one might take the required complications to be a factual refutation of the theory, but a staunch advocate of phonetically-determined phonological representations would simply declare that such complexity is necessitated by the axiom that features are phonetic descriptions.

[^2]:    3 "About" indicates that individual melodies are not easily-enumerable entities, they are epiphenomena arising from the intersection of individual features. A dozen is a ballpark figure, a count of obvious distinctions.
    ${ }^{4}$ The number refers to conventional melody number, which approximates the historical order of their identification.

[^3]:    ${ }^{5}$ The pairing of CVCVCVVCV toned and toneless stems completely identifies which melodic pattern a particular tense follows.

[^4]:    ${ }^{6}$ We return to this table, especially the M3 columns, where sometime there is tone to the right of the second syllable.

[^5]:    ${ }^{7}$ Specifically, in the interface to phonetics, $T_{L}$ maps to the same input target as a TBU without $T$.

[^6]:    ${ }^{8}$ The features triggering the rule are temporarily omitted: we focus on how many rules there are and what they do.

[^7]:    9 It also follows from this that $T_{L}$ is not subject to deletion, an important detail that bears on the question of how tones group together in classes. Ultimately, there will be a subclassification into higher-order tones recapitulating the traditional $\mathrm{H}, \mathrm{L}, \varnothing$ dictinction.

